DC FieldValueLanguage
dc.contributor.authorBach, Jörn-
dc.contributor.authorGrohsjean, Alexander-
dc.contributor.authorSchwanenberger, Christian-
dc.contributor.authorStelldinger, Peer-
dc.date.accessioned2025-09-19T12:32:02Z-
dc.date.available2025-09-19T12:32:02Z-
dc.date.issued2025-07-17-
dc.identifier.isbn979-8-4007-1402-3en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18196-
dc.description.abstractMachine Unlearning describes the challenge of forgetting data points that were used for an initial training of a machine learning model. Data privacy concerns as well as safety of sensitive learning data are the driving motivation for the emergence of this field. The special case of class unlearning is a challenge, as an entire class is to be unlearned without affecting the accuracy of potentially very similar other classes. We propose a novel method for class unlearning that is robust, efficient and can be applied without having access to the full initial training data. The approach is based on disambiguation-free partial label learning and can be understood as a stabilized version of gradient ascent. Furthermore, we show how this approach can be applied to training data with negative quasiprobabilities which is a problem encountered in high energy physics.en
dc.language.isoenen_US
dc.publisherAssociation for Computing Machineryen_US
dc.subjectdifferential privacyen_US
dc.subjectmachine learningen_US
dc.subjectnegative quasiprobabilitiesen_US
dc.subjectpartial label learningen_US
dc.subjectunlearningen_US
dc.subject.ddc004: Informatiken_US
dc.titleUnlearning with partial label learningen
dc.typeinProceedingsen_US
dc.relation.conferenceACM International Conference on PErvasive Technologies Related to Assistive Environments 2025en_US
dc.identifier.scopus2-s2.0-105013070755en
dc.description.versionPeerRevieweden_US
local.contributorCorporate.editorAssociation for Computing Machinery-
tuhh.container.endpage181en_US
tuhh.container.startpage175en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1145/3733155.3733201-
tuhh.relation.ispartofseriesProceedings of The 18th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2025) : June 25– June 27, Corfu, Greeceen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typecpen
dc.funding.number390833306en
dc.funding.sponsorHelmholtz Associationen
dc.relation.acronymDFGen
item.seriesrefProceedings of The 18th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2025) : June 25– June 27, Corfu, Greece-
item.languageiso639-1en-
item.openairetypeinProceedings-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidBach, Jörn-
item.creatorOrcidGrohsjean, Alexander-
item.creatorOrcidSchwanenberger, Christian-
item.creatorOrcidStelldinger, Peer-
item.cerifentitytypePublications-
item.tuhhseriesidProceedings of The 18th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2025) : June 25– June 27, Corfu, Greece-
item.fulltextNo Fulltext-
item.creatorGNDBach, Jörn-
item.creatorGNDGrohsjean, Alexander-
item.creatorGNDSchwanenberger, Christian-
item.creatorGNDStelldinger, Peer-
item.grantfulltextnone-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0001-8079-2797-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons