Verlagslink DOI: | 10.1145/3733155.3733194 | Titel: | Self-supervised deep visual stereo odometry with 3D-geometric constraints | Sprache: | Englisch | Autorenschaft: | Zach, Juri Stelldinger, Peer ![]() |
Herausgeber: | Association for Computing Machinery | Schlagwörter: | deep learning; optical flow; self-supervised learning; stereo image processing; visual odometry | Erscheinungsdatum: | 17-Jul-2025 | Verlag: | Association for Computing Machinery | Teil der Schriftenreihe: | Proceedings of The 18th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2025) : June 25– June 27, Corfu, Greece | Anfangsseite: | 336 | Endseite: | 342 | Konferenz: | ACM International Conference on PErvasive Technologies Related to Assistive Environments 2025 | Zusammenfassung: | This work presents a novel self-supervised learning framework for deep visual odometry on stereo cameras. Recent work on deep visual odometry is often based on monocular vision. A common approach is to use two separate neural networks, which use raw images for depth and ego-motion prediction. This paper proposes an alternative approach that argues against separate prediction of depth and ego-motion and emphasizes the advantages of optical flow and stereo cameras. Its central component is a deep neural network for optical flow predictions, from which both depth and ego-motion can be derived. The neural network training is regulated by a 3D-geometric constraint, which enforces a realistic structure of the scene over consecutive frames and models static and moving objects. It ensures that the neural network has to predict the optical flow as it would occur in the real world. The presented framework is tested on the KITTI dataset. It achieves very good results, outperforming most algorithms for deep visual odometry, and exceeds state-of-the-art results for depth detection. |
URI: | https://hdl.handle.net/20.500.12738/18198 | ISBN: | 979-8-4007-1402-3 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Informatik Fakultät Technik und Informatik |
Dokumenttyp: | Konferenzveröffentlichung |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons