Verlagslink DOI: 10.1016/j.ifacol.2025.07.176
Titel: Robust Predictable Control (RPC) for optimizing fed-batch penicillin production
Sprache: Englisch
Autorenschaft: Simethy, Gary 
Bauer, Margret 
Tan, Ruomu 
Buelow, Fabian 
Herausgeber*In: Mesbah, Ali 
Gunawan, Rudiyanto 
Chiang, Leo H. 
Paulen, Radoslav 
Fikar, Miroslav 
Klaučo, Martin 
Schlagwörter: Nonlinear Dynamics; Penicillin Production; Process Optimization; Reinforcement Learning (RL); Reward Function; Robust Predictable Control (RPC)
Erscheinungsdatum: 13-Aug-2025
Verlag: Elsevier
Zeitschrift oder Schriftenreihe: IFAC-PapersOnLine 
Zeitschriftenband: 59
Zeitschriftenausgabe: 6
Anfangsseite: 385
Endseite: 390
Konferenz: Symposium on Dynamics and Control of Process Systems, including Biosystems 2025 
Zusammenfassung: 
Biochemical processes, characterized by nonlinear dynamics and uncertainties, pose significant optimization challenges. This work explores Robust Predictable Control (RPC) as a Reinforcement Learning (RL) algorithm to enhance a fed-batch penicillin production process utilizing the simulation model IndPenSim. Unlike some RL implementations that constrain exploration based on prior knowledge, the selected RPC approach allows the RL agent to explore freely and identify optimal control strategies by itself. We trained the RL agent under disturbance-free conditions and evaluated its performance against various unseen initial process conditions and disturbances. Results show that RPC significantly outperforms other process control methods, including other RL implementations, achieving higher yields with fewer necessary measurements as input for the RL agent. Analyzing two reward functions - penicillin concentration and yield - revealed that using concentration in the reward function improved agent training for maximizing yield, highlighting the importance of reward design in RL. Additionally, the trained RL agent effectively adapted to different action intervals, demonstrating robustness in dynamic environments without retraining. Our findings underscore RPC's potential for optimizing biochemical processes, especially in scenarios with few measurements, paving the way for AI-driven control systems in industrial applications.
URI: https://hdl.handle.net/20.500.12738/18202
ISSN: 2405-8963
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Verfahrenstechnik 
Fakultät Life Sciences 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons