DC ElementWertSprache
dc.contributor.authorSimethy, Gary-
dc.contributor.authorBauer, Margret-
dc.contributor.authorTan, Ruomu-
dc.contributor.authorBuelow, Fabian-
dc.date.accessioned2025-09-22T11:57:21Z-
dc.date.available2025-09-22T11:57:21Z-
dc.date.issued2025-08-13-
dc.identifier.issn2405-8963en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18202-
dc.description.abstractBiochemical processes, characterized by nonlinear dynamics and uncertainties, pose significant optimization challenges. This work explores Robust Predictable Control (RPC) as a Reinforcement Learning (RL) algorithm to enhance a fed-batch penicillin production process utilizing the simulation model IndPenSim. Unlike some RL implementations that constrain exploration based on prior knowledge, the selected RPC approach allows the RL agent to explore freely and identify optimal control strategies by itself. We trained the RL agent under disturbance-free conditions and evaluated its performance against various unseen initial process conditions and disturbances. Results show that RPC significantly outperforms other process control methods, including other RL implementations, achieving higher yields with fewer necessary measurements as input for the RL agent. Analyzing two reward functions - penicillin concentration and yield - revealed that using concentration in the reward function improved agent training for maximizing yield, highlighting the importance of reward design in RL. Additionally, the trained RL agent effectively adapted to different action intervals, demonstrating robustness in dynamic environments without retraining. Our findings underscore RPC's potential for optimizing biochemical processes, especially in scenarios with few measurements, paving the way for AI-driven control systems in industrial applications.en
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofIFAC-PapersOnLineen_US
dc.subjectNonlinear Dynamicsen_US
dc.subjectPenicillin Productionen_US
dc.subjectProcess Optimizationen_US
dc.subjectReinforcement Learning (RL)en_US
dc.subjectReward Functionen_US
dc.subjectRobust Predictable Control (RPC)en_US
dc.subject.ddc650: Managementen_US
dc.titleRobust Predictable Control (RPC) for optimizing fed-batch penicillin productionen
dc.typeinProceedingsen_US
dc.relation.conferenceSymposium on Dynamics and Control of Process Systems, including Biosystems 2025en_US
dc.identifier.scopus2-s2.0-105013959845en
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorMesbah, Ali-
local.contributorPerson.editorGunawan, Rudiyanto-
local.contributorPerson.editorChiang, Leo H.-
local.contributorPerson.editorPaulen, Radoslav-
local.contributorPerson.editorFikar, Miroslav-
local.contributorPerson.editorKlaučo, Martin-
tuhh.container.endpage390en_US
tuhh.container.issue6en_US
tuhh.container.startpage385en_US
tuhh.container.volume59en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Verfahrenstechniken_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publisher.doi10.1016/j.ifacol.2025.07.176-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.rights.cchttps://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
dc.source.typecpen
item.languageiso639-1en-
item.openairetypeinProceedings-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidSimethy, Gary-
item.creatorOrcidBauer, Margret-
item.creatorOrcidTan, Ruomu-
item.creatorOrcidBuelow, Fabian-
item.cerifentitytypePublications-
item.creatorGNDSimethy, Gary-
item.creatorGNDBauer, Margret-
item.creatorGNDTan, Ruomu-
item.creatorGNDBuelow, Fabian-
item.grantfulltextnone-
crisitem.author.deptDepartment Verfahrenstechnik (ehemalig, aufgelöst 10.2025)-
crisitem.author.parentorgFakultät Life Sciences (ehemalig, aufgelöst 10.2025)-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons