Zitierlink:
https://doi.org/10.48441/4427.2886
Titel: | Numerical and analytical takeoff field length calculations for jet aircraft | Sprache: | Englisch | Autorenschaft: | Lucht, Dennis Scholz, Dieter ![]() |
Schlagwörter: | Luftfahrt; Flugzeug; Flugleistung; Start; Luftfahrttechnik; Verkehrsflugzeug; Flugmechanik; Zulassung; Airbus; Boeing; Computersimulation; Tabellenkalkulation; MATLAB; EXCEL; Abflug; Aeronautics; Airplanes; Airplanes--Performance; Electronic spreadsheets; Aeronautical engineering; Jet transports; Airplanes--Take-off; aviation; aircraft; field length; TOFL; balanced field length; BFL; take-off distance; TOD; acceleration; deceleration; EASA; FAA | Erscheinungsdatum: | 23-Sep-2025 | Wird ergänzt von: | 10.7910/DVN/QX3MAH | Konferenz: | Deutscher Luft- und Raumfahrtkongress 2025 | Zusammenfassung: | Purpose – The greater of two distances (Balanced Field Length or Takeoff Distance +15%) results in the Takeoff Field Length (TOFL). The TOFL is a takeoff distance with safety margins according to Certification Standards for Large Aeroplanes by EASA (CS-25) and FAA (FAR Part 25). Simple analytical approximations for the TOFL are checked against more demanding numerical simulations to determine the validity of the simple solutions and to implement adjustments for them as necessary. --- Methodology – The differential equation of the aircraft's acceleration is solved in MATLAB together with varying engine failure speeds. Analytical calculations of the Balanced Field Length by Torenbeek, Kundu, and Loftin are investigated. This includes the evaluation of statistical data. --- Findings – Analytical approximations deviate by 0.1% to 28.2% from the numerical solution. The most accurate analytical approximation is the simple method proposed by Loftin based on statistics. It shows deviations of less than 5.4%. The results confirm that the TOFL for jets with four engines is determined by the Takeoff Distance +15%, while for jets with two engines, the Balanced Field Length is decisive for TOFL. --- Research limitations – Simplifying assumptions had to be made e.g. regarding rotation time and speed, flap geometry, and asymmetric drag. While ground distances were solved numerically from acceleration and deceleration, air distance and rotation distance had to be determined analytically. --- Practical implications – A reliable and tested analytical procedure is useful for quick aircraft performance estimates and to include an inverse TOFL method into aircraft preliminary sizing. --- Originality – This seems to be the first report to provide a systematic check of available analytical approximations for the TOFL in comparison with a numerical solution. |
URI: | https://hdl.handle.net/20.500.12738/18284 | DOI: | 10.48441/4427.2886 | Begutachtungsstatus: | Für diese Version ist aktuell keine Begutachtung geplant | Einrichtung: | Forschungsgruppe Flugzeugentwurf und -systeme (AERO) Department Fahrzeugtechnik und Flugzeugbau Fakultät Technik und Informatik |
Dokumenttyp: | Poster | Hinweise zur Quelle: | LUCHT, Dennis, SCHOLZ, Dieter, 2025. Numerical and Analytical Takeoff Field Length Calculations for Jet Aircraft. Poster. German Aerospace Congress (Augsburg, Germany, 23.-25.09.2025). Available from: https://doi.org/10.48441/4427.2886 |
Enthalten in den Sammlungen: | Publications with full text |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
AERO_POS_DLRK2025_Takeoff_Field_Length_Calculation_2025-09-23.pdf | 505.07 kB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons