Verlagslink: https://international-symposium.org/amies_2025/proceedings_2025/Hensel_AmiEs_2025_Paper.pdf
https://web.archive.org/web/20251105131123/https://international-symposium.org/amies_2025/proceedings_2025/Hensel_AmiEs_2025_Paper.pdf
https://web.archive.org/web/20251105131014/https://international-symposium.org/amies_2025/proceedings.html
Titel: Virtual environment and automated physical rolling maze as experimental platform for deep reinforcement learning
Sprache: Englisch
Autorenschaft: Hensel, Marc  
Lassahn, Sandra 
Schlagwörter: artificial intelligence; deep reinforcement learning; self-learning systems; image processing
Erscheinungsdatum: Sep-2025
Verlag: International Symposium on Ambient Intelligence and Embedded Systems
Teil der Schriftenreihe: Proceedings of the International Symposium on Ambient Intelligence and Embedded Systems (AmiEs-2025), September 24 - 27, 2025, Hamburg, Germany 
Konferenz: International Symposium on Ambient Intelligence and Embedded Systems 2025 
Zusammenfassung: 
In the context of training competent future engineers, we develop platforms that shall help students to build practical competencies by working on challenging tasks for creative and highly motivating applications. Several of these platforms use systems that autonomously learn to master control tasks. Such systems are typically based on deep reinforcement learning (DRL), and related algorithms are frequently demonstrated by agents that learn to play games. In the following, we report on first results related to a platform where AI agents learn to manoeuvre balls through virtual and physical mazes while avoiding dropping into holes.
URI: https://hdl.handle.net/20.500.12738/18358
Begutachtungsstatus: Für diese Version ist aktuell keine Begutachtung geplant
Einrichtung: Department Informations- und Elektrotechnik (ehemalig, aufgelöst 10.2025) 
Fakultät Technik und Informatik (ehemalig, aufgelöst 10.2025) 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.