DC FieldValueLanguage
dc.contributor.authorHensel, Marc-
dc.contributor.authorLassahn, Sandra-
dc.date.accessioned2025-11-05T13:22:05Z-
dc.date.available2025-11-05T13:22:05Z-
dc.date.issued2025-09-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18358-
dc.description.abstractIn the context of training competent future engineers, we develop platforms that shall help students to build practical competencies by working on challenging tasks for creative and highly motivating applications. Several of these platforms use systems that autonomously learn to master control tasks. Such systems are typically based on deep reinforcement learning (DRL), and related algorithms are frequently demonstrated by agents that learn to play games. In the following, we report on first results related to a platform where AI agents learn to manoeuvre balls through virtual and physical mazes while avoiding dropping into holes.en
dc.language.isoenen_US
dc.publisherInternational Symposium on Ambient Intelligence and Embedded Systemsen_US
dc.subjectartificial intelligenceen_US
dc.subjectdeep reinforcement learningen_US
dc.subjectself-learning systemsen_US
dc.subjectimage processingen_US
dc.subject.ddc004: Informatiken_US
dc.titleVirtual environment and automated physical rolling maze as experimental platform for deep reinforcement learningen
dc.typeinProceedingsen_US
dc.relation.conferenceInternational Symposium on Ambient Intelligence and Embedded Systems 2025en_US
dc.description.versionNonPeerRevieweden_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informations- und Elektrotechnik (ehemalig, aufgelöst 10.2025)en_US
tuhh.publication.instituteFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)en_US
tuhh.publisher.urlhttps://international-symposium.org/amies_2025/proceedings_2025/Hensel_AmiEs_2025_Paper.pdf-
tuhh.publisher.urlhttps://web.archive.org/web/20251105131123/https://international-symposium.org/amies_2025/proceedings_2025/Hensel_AmiEs_2025_Paper.pdf-
tuhh.publisher.urlhttps://web.archive.org/web/20251105131014/https://international-symposium.org/amies_2025/proceedings.html-
tuhh.relation.ispartofseriesProceedings of the International Symposium on Ambient Intelligence and Embedded Systems (AmiEs-2025), September 24 - 27, 2025, Hamburg, Germanyen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.tuhhseriesidProceedings of the International Symposium on Ambient Intelligence and Embedded Systems (AmiEs-2025), September 24 - 27, 2025, Hamburg, Germany-
item.languageiso639-1en-
item.openairetypeinProceedings-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidHensel, Marc-
item.creatorOrcidLassahn, Sandra-
item.seriesrefProceedings of the International Symposium on Ambient Intelligence and Embedded Systems (AmiEs-2025), September 24 - 27, 2025, Hamburg, Germany-
item.cerifentitytypePublications-
item.creatorGNDHensel, Marc-
item.creatorGNDLassahn, Sandra-
item.grantfulltextnone-
crisitem.author.deptDepartment Informations- und Elektrotechnik (ehemalig, aufgelöst 10.2025)-
crisitem.author.orcid0009-0005-8888-3761-
crisitem.author.parentorgFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)-
Appears in Collections:Publications without full text
Show simple item record

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.