Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.3044
Publisher DOI: 10.31235/osf.io/7g5ku_v1
Title: Uncertainty visualization in data journalism : a pilot study on election polls in a DER SPIEGEL online article
Language: English
Authors: Garro, Carmen 
Kinkeldey, Christoph  
Keywords: uncertainty visualization; data journalism; election polls; pilot study
Issue Date: 27-Aug-2025
Publisher: Center for Open Science (OSF)
Journal or Series Name: Open Science Framework : a scholary commons to connect the entire research cycle 
Project: Transparenz durch Unsicherheiten: neue Ansätze für intuitive Kommunikation von Unsicherheiten an Nicht-Wissenschaftler*innen im Datenjournalismus 
Conference: IEEE Visualization & Visual Analytics 2025 
Abstract: 
Uncertainty visualization, such as in political polling, plays a key role in shaping public understanding and interpretation of data. While most research on uncertainty visualization has focused on controlled laboratory settings, we investigate how readers perceive and interpret these visuals in a real-world context. We included a short survey in a DER SPIEGEL pre-election article, gathering 98 voluntary responses. Results indicate that two-thirds of respondents found the visualization useful, but interpretations varied across levels of engagement—from basic recognition to inaccurate interpretations. These findings highlight both the potential and the pitfalls of uncertainty visualizations in journalistic contexts and will inform a follow-up study aimed at reducing misinterpretation and mistrust in probabilistic reporting.
URI: https://hdl.handle.net/20.500.12738/18531
DOI: 10.48441/4427.3044
Review status: This version was peer reviewed (peer review)
Institute: Department Information und Medienkommunikation (ehemalig, aufgelöst 10.2025) 
Fakultät Design, Medien und Information (ehemalig, aufgelöst 10.2025) 
Type: Poster
Funded by: Bundesministerium für Forschung, Technologie und Raumfahrt 
Appears in Collections:Publications with full text

Files in This Item:
File Description SizeFormat
Garro_Kinkeldey-2025.pdf187.41 kBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons