Verlagslink DOI: 10.1371/journal.pcbi.1013435
Titel: Potentials and limitations in the application of Convolutional Neural Networks for mosquito species identification using wing images
Sprache: Englisch
Autorenschaft: Nolte, Kristopher 
Baumbach, Jan 
Lins, Christian  
Lohmann, Jens Johann Georg 
Kollmannsberger, Philip 
Sauer, Felix Gregor 
Lühken, Renke 
Herausgeber*In: Guo, Fei 
Erscheinungsdatum: 5-Sep-2025
Verlag: Public Library of Science
Zeitschrift oder Schriftenreihe: PLoS Computational Biology 
Zeitschriftenband: 21
Zeitschriftenausgabe: 9
Zusammenfassung: 
This study addresses the pressing global health burden of mosquito-borne diseases by investigating the application of Convolutional Neural Networks (CNNs) for mosquito species identification using wing images. Conventional identification methods are hampered by the need for significant expertise and resources, while CNNs offer a promising alternative. Our research aimed to develop a reliable and applicable classification system that can be used under real-world conditions, with a focus on improving model adaptability to unencountered devices, mitigating dataset biases, and ensuring usability across different users without standardized protocols. We utilized a large, diverse dataset of mosquito wing images of 21 taxa and three image-capturing devices (N=14,888) and a preprocessing pipeline to standardize images and remove undesirable image features. The developed CNN models demonstrated high performance, with an average balanced accuracy of 98.3% and a macro F1-score of 97.6%, effectively distinguishing between the 21 mosquito taxa, including morphologically similar pairs. The preprocessing pipeline improved the model’s robustness, reducing performance drops on unfamiliar devices effectively. However, the study also highlights the persistence of inherent dataset biases, which the preprocessing steps could only partially mitigate. The classification system’s practical usability was demonstrated through a feasibility study, showing high inter-rater reliability. The results underscore the potential of the proposed workflow to enhance vector surveillance, especially in resource-constrained settings, and suggest its applicability to other winged insect species. The classification system developed in this study is available for public use, providing a valuable tool for vector surveillance and research, supporting efforts to mitigate the spread of mosquito-borne diseases.
URI: https://hdl.handle.net/20.500.12738/18586
ISSN: 1553-7358
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik (ehemalig, aufgelöst 10.2025) 
Fakultät Technik und Informatik (ehemalig, aufgelöst 10.2025) 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: article number: e1013435
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons