Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorPareigis, Stephan-
dc.contributor.authorFigueiredo, Carolina-
dc.date.accessioned2026-01-20T13:32:31Z-
dc.date.available2026-01-20T13:32:31Z-
dc.date.created2024-06-14-
dc.date.issued2026-01-20-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18683-
dc.description.abstractThis Thesis offers a new perspective on how to assess squat performance without the help of personal trainers. Media Pipe model allowed me to extract keypoints for various squat positions from pre-recorded videos. The data was then saved into a file with respective categorizations. Each file and a different parameter being valued. Squat data was categorized based on side (front, left, right), width (wide, narrow, neutral), range (low, medium, parallel, high) and stance (up, down). Thresholds were defined so that with the help of the Pose Estimation model keypoints were automatically categorized and saved. The CSV files were then loaded into data frames to be used to train each category’s model. With all the models trained, combining them in real-time feedback demonstration where all the categories were showcased and then saved as well into a csv file so that the set could be analyze. Ultimately, it was decided that this last file was also a good base to try and classify a squat as correct or incorrect depending on the users preference. the study aims to provide a customizable framework for squat classification, accommodating various target ranges and widths, thereby offering flexibility based on different research parameters and individual goals. The resulting system increases the accuracy of squat performance feedback, highlighting the potential for automated, real-time assessment in fitness applications.en
dc.language.isoenen_US
dc.subjectPose estimationen_US
dc.subjectsquat assessmenten_US
dc.subjectMediaPipeen_US
dc.subjectscikit-learnen_US
dc.subjectOpenCVen_US
dc.subject.ddc004: Informatiken_US
dc.titleSquat Assessment using Pose Estimationen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Informatik (ehemalig, aufgelöst 10.2025)en_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeTiedemann, Tim-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-229376-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatik (ehemalig, aufgelöst 10.2025)en_US
tuhh.publication.instituteFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)en_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.openairetypeThesis-
item.languageiso639-1en-
item.grantfulltextopen-
item.creatorGNDFigueiredo, Carolina-
item.cerifentitytypePublications-
item.creatorOrcidFigueiredo, Carolina-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.advisorGNDPareigis, Stephan-
item.fulltextWith Fulltext-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
BA_Squat Assessment using Pose Estimation_geschwärzt.pdf450.96 kBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

64
checked on 29.01.2026

Download(s)

8
checked on 29.01.2026

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.