DC FieldValueLanguage
dc.contributor.authorSchultz, Martin-
dc.contributor.authorTropmann-Frick, Marina-
dc.date.accessioned2020-09-02T15:37:19Z-
dc.date.available2020-09-02T15:37:19Z-
dc.date.issued2020-01-
dc.identifier.isbn978-0-9981331-3-3en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/4320-
dc.titleAutoencoder Neural Networks versus External Auditors: Detecting Unusual Journal Entries in Financial Statement Audits.
dc.typeinProceedingsen_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Design, Medien und Informationen_US
tuhh.publisher.doi10.24251/HICSS.2020.666-
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dcterms.DCMITypeText-
item.fulltextNo Fulltext-
item.creatorGNDSchultz, Martin-
item.creatorGNDTropmann-Frick, Marina-
item.openairetypeinProceedings-
item.grantfulltextnone-
item.creatorOrcidSchultz, Martin-
item.creatorOrcidTropmann-Frick, Marina-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0009-0009-7920-3823-
crisitem.author.orcid0000-0003-1623-5309-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

187
checked on Jan 13, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.