Publisher DOI: 10.1007/978-3-030-22788-3_2
Title: Multi-Tree Decomposition Methods for Large-Scale Mixed Integer Nonlinear Optimization
Language: English
Authors: Nowak, Ivo 
Muts, Pavlo 
Hendrix, Eligius M.T. 
Editor: Velásquez-Bermúdez, Jesús M. 
Khakifirooz, Marzieh 
Fathi, Mahdi 
Issue Date: 7-Sep-2019
Publisher: Springer
Book title: Large scale optimization in supply chains and smart manufacturing : theory and applications
Journal or Series Name: Springer optimization and its applications 
Volume: 149
Startpage: 27
Endpage: 58
Abstract: 
Most industrial optimization problems are sparse and can be formulated as block-separable mixed-integer nonlinear programming (MINLP) problems, defined by linking low-dimensional sub-problems by (linear) coupling constraints. Decomposition methods solve a block-separable MINLP by alternately solving master problems and sub-problems. In practice, decomposition methods are sometimes the only possibility to compute high-quality solutions of large-scale optimization problems. However, efficient implementations may require expert knowledge and problem-specific features. Recently, there is renewed interest in making these methods accessible to general users by developing generic decomposition frameworks and modelling support. The focus of this chapter is on so-called multi-tree decomposition methods, which iteratively approximate the feasible area without using a single (global) branch-and-bound tree, i.e. branch-and-bound is only used for solving sub-problems. After an introduction, we describe first outer approximation (OA) decomposition methods, including the adaptive, multivariate partitioning (AMP) and the novel decomposition-based outer approximation (DECOA) algorithm . This is followed by a description of multi-tree methods using a reduced master problem for solving large-scale industrial optimization problems. The first method to be described applies parallel column generation (CG) and iterative fixing for solving nonconvex transport optimization problems with several hundred millions of variables and constraints. The second method is based on a novel approach combining CG and compact outer approximation. The last methodology to be discussed is the general Benders decomposition method for globally solving large nonconvex stochastic programs using a reduced mixed-integer programming (MIP) master problem.
URI: http://hdl.handle.net/20.500.12738/4342
ISBN: 978-3-030-22788-3
978-3-030-22787-6
ISSN: 1931-6836
Review status: This version was peer reviewed (peer review)
Institute: Department Maschinenbau und Produktion 
Fakultät Technik und Informatik 
Type: Chapter (Book)
Appears in Collections:Publications without full text

Show full item record

Page view(s)

107
checked on Dec 25, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.