DC FieldValueLanguage
dc.contributor.authorNowak, Ivo-
dc.contributor.authorMuts, Pavlo-
dc.contributor.authorHendrix, Eligius M.T.-
dc.date.accessioned2020-09-02T15:37:26Z-
dc.date.available2020-09-02T15:37:26Z-
dc.date.issued2019-09-07-
dc.identifier.isbn978-3-030-22788-3en_US
dc.identifier.isbn978-3-030-22787-6en_US
dc.identifier.issn1931-6836en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/4342-
dc.description.abstractMost industrial optimization problems are sparse and can be formulated as block-separable mixed-integer nonlinear programming (MINLP) problems, defined by linking low-dimensional sub-problems by (linear) coupling constraints. Decomposition methods solve a block-separable MINLP by alternately solving master problems and sub-problems. In practice, decomposition methods are sometimes the only possibility to compute high-quality solutions of large-scale optimization problems. However, efficient implementations may require expert knowledge and problem-specific features. Recently, there is renewed interest in making these methods accessible to general users by developing generic decomposition frameworks and modelling support. The focus of this chapter is on so-called multi-tree decomposition methods, which iteratively approximate the feasible area without using a single (global) branch-and-bound tree, i.e. branch-and-bound is only used for solving sub-problems. After an introduction, we describe first outer approximation (OA) decomposition methods, including the adaptive, multivariate partitioning (AMP) and the novel decomposition-based outer approximation (DECOA) algorithm . This is followed by a description of multi-tree methods using a reduced master problem for solving large-scale industrial optimization problems. The first method to be described applies parallel column generation (CG) and iterative fixing for solving nonconvex transport optimization problems with several hundred millions of variables and constraints. The second method is based on a novel approach combining CG and compact outer approximation. The last methodology to be discussed is the general Benders decomposition method for globally solving large nonconvex stochastic programs using a reduced mixed-integer programming (MIP) master problem.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofSpringer optimization and its applicationsen_US
dc.subject.ddc004: Informatiken_US
dc.titleMulti-Tree Decomposition Methods for Large-Scale Mixed Integer Nonlinear Optimizationen
dc.typeinBooken_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorVelásquez-Bermúdez, Jesús M.-
local.contributorPerson.editorKhakifirooz, Marzieh-
local.contributorPerson.editorFathi, Mahdi-
tuhh.container.endpage58en_US
tuhh.container.startpage27en_US
tuhh.container.volume149en_US
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1007/978-3-030-22788-3_2-
tuhh.type.opusInBuch (Kapitel / Teil einer Monographie)-
dc.type.casraiBook Chapter-
dc.type.dinibookPart-
dc.type.driverbookPart-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.book.titleLarge scale optimization in supply chains and smart manufacturing : theory and applicationsen_US
item.creatorGNDNowak, Ivo-
item.creatorGNDMuts, Pavlo-
item.creatorGNDHendrix, Eligius M.T.-
item.fulltextNo Fulltext-
item.creatorOrcidNowak, Ivo-
item.creatorOrcidMuts, Pavlo-
item.creatorOrcidHendrix, Eligius M.T.-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_3248-
item.openairetypeinBook-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Appears in Collections:Publications without full text
Show simple item record

Page view(s)

111
checked on Dec 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.