Publisher DOI: 10.1088/1742-6596/1618/5/052017
Title: Progressive structural scaling of a 20 MW two-bladed offshore wind turbine rotor blade examined by finite element analyses
Language: English
Authors: Schütt, Marcel 
Anstock, Fabian 
Schorbach, Vera  
Issue Date: Sep-2020
Publisher: IOP Publishing
Journal or Series Name: Journal of physics 
Volume: 1618
Conference: The Science of Making Torque from Wind 2020 
Abstract: 
Two-bladed turbines offer a promising opportunity for rotor cost savings, especially considering the ongoing growth trend in rotor size. An increased chord and airfoil thickness of a two-bladed turbine’s blade results in potential structural improvements caused by a rapidly growing second moment of area. Compared to a three-bladed turbine’s blade, the blade structure would theoretically require less material, while withstanding 50% higher flapwise loads. An analytical method of progressive structural scaling for three-dimensional rotor blade structures, based on equal material stresses, is introduced to calculate the modified structural thickness properties of the two-bladed turbine’s blade. It simplifies the airfoil-shaped structure to a thin-walled rectangle, utilizes a fixed initial flapwise load factor, and scales the edgewise loads proportionally to the required blade mass. To evaluate the validity of this analytical approach, a progressively scaled and an iterated 20 MW two-bladed turbine’s blade are examined with finite element analyses for static loads. The outcomes are then compared to corresponding analyses of a three-bladed turbine’s reference blade. Overall, the static stress comparisons at different blade positions show good agreement with the analytical results. Nevertheless, the buckling analyses performed reveal stability issues, which subsequently will lead to a readjustment of the blade mass.
URI: http://hdl.handle.net/20.500.12738/4653
ISSN: 1742-6596
Institute: Department Maschinenbau und Produktion 
Fakultät Technik und Informatik 
Type: Chapter/Article (Proceedings)
Appears in Collections:Publications without full text

Show full item record

Page view(s)

109
checked on Jan 14, 2025

Google ScholarTM

Check

HAW Katalog

Check

Add Files to Item

Note about this record


This item is licensed under a Creative Commons License Creative Commons