DC ElementWertSprache
dc.contributor.advisorGalar, Diego-
dc.contributor.authorGerdes, Mike-
dc.date.accessioned2020-09-02T15:40:58Z-
dc.date.available2020-09-02T15:40:58Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/5028-
dc.description.abstractReducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed. A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.en_US
dc.language.isoen_USen_US
dc.publisherLuleå University of Technologyen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleHealth Monitoring for Aircraft Systems using Decision Trees and Genetic Evolutionen_US
dc.typeThesisen_US
thesis.grantor.departmentDepartment Fahrzeugtechnik und Flugzeugbauen_US
thesis.grantor.placeLuleåen_US
thesis.grantor.universityOrInstitutionLuleå University of Technologyen_US
tuhh.contributor.refereeKumar, Uday-
tuhh.contributor.refereeScholz, Dieter-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungsgruppe Flugzeugentwurf und -systeme (AERO)en_US
tuhh.publisher.doi10.15488/9213-
tuhh.publisher.urlhttp://PAHMIR.ProfScholz.de-
tuhh.publisher.urlhttps://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-12-20.012-
tuhh.type.opusDissertation-
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisdoctoralThesisen_US
dcterms.DCMITypeText-
item.creatorGNDGerdes, Mike-
item.fulltextNo Fulltext-
item.creatorOrcidGerdes, Mike-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.advisorGNDGalar, Diego-
item.languageiso639-1en_US-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypeThesis-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

241
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.