DC ElementWertSprache
dc.contributor.advisorGalar, Diego-
dc.contributor.authorGerdes, Mike-
dc.date.accessioned2020-09-02T15:40:58Z-
dc.date.available2020-09-02T15:40:58Z-
dc.date.issued2019-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/5028-
dc.description.abstractReducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed. A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.en
dc.description.sponsorshipHamburg. Behörde für Wirtschaft und Innovationen_US
dc.language.isoenen_US
dc.publisherLuleå University of Technologyen_US
dc.subjectLuftfahrten_US
dc.subjectLuftfahrzeugen_US
dc.subjectInstandhaltungen_US
dc.subjectMaschinelles Lernenen_US
dc.subjectFlugzeugsystemeen_US
dc.subjectWartungen_US
dc.subjectAeronauticsen_US
dc.subjectAirplanesen_US
dc.subjectDecision Treesen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectExpert Systemsen_US
dc.subjectMachine Learningen_US
dc.subjectBig Dataen_US
dc.subjectPattern Recognition Systemsen_US
dc.subjectCondition Monitoringen_US
dc.subjectRemaining Useful Life Predictionen_US
dc.subjectFuzzy Decision Tree Evaluationen_US
dc.subjectSystem Monitoringen_US
dc.subjectAircraft Health Monitoringen_US
dc.subjectFeature Extractionen_US
dc.subjectFeature Selectionen_US
dc.subjectData Drivenen_US
dc.subjectHealth Prognosticen_US
dc.subjectKnowledge Based Systemen_US
dc.subjectSupervised Learningen_US
dc.subjectData-Driven Predictive Health Monitoringen_US
dc.subjectHealth Indicatorsen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleHealth monitoring for aircraft systems using decision trees and genetic evolutionen
dc.typeThesisen_US
dc.identifier.doi10.48441/4427.2606-
dcterms.dateAccepted2019-12-20-
dc.description.versionAlternativeRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.placeLuleåen_US
thesis.grantor.universityOrInstitutionLuleå University of Technologyen_US
tuhh.contributor.refereeKumar, Uday-
tuhh.contributor.refereeScholz, Dieter-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-50225-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungsgruppe Flugzeugentwurf und -systeme (AERO)en_US
tuhh.publication.instituteLuleå University of Technologyen_US
tuhh.publisher.doi10.15488/9213-
tuhh.publisher.urlhttps://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-12-20.012-
tuhh.publisher.urlhttps://n2t.net/ark:/13960/t7mq3cm3r-
tuhh.type.opusDissertation-
dc.relation.projectPreventive Aircraft Health Monitoring for Integrated Reconfiguration – PAHMIRen_US
dc.rights.cchttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.type.casraiDissertation-
dc.type.dinidoctoralThesis-
dc.type.driverdoctoralThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisdoctoralThesisen_US
dcterms.DCMITypeText-
local.comment.externalGERDES, Mike, 2019. Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution. Dissertation. Luleå, Sweden: Luleå University of Technology, Operation and Maintenance Engineering. Available from: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-12-20.012en_US
tuhh.apc.statusfalseen_US
item.creatorGNDGerdes, Mike-
item.grantfulltextopen-
item.openairetypeThesis-
item.advisorGNDGalar, Diego-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.creatorOrcidGerdes, Mike-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
crisitem.project.funderHamburg-
Enthalten in den Sammlungen:Publications with full text
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
TextGerdes.pdf13.84 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

281
checked on 16.05.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons