Verlagslink DOI: 10.1016/j.ifacol.2015.09.562
Titel: Fault detection with qualitative models reduced by tensor decomposition methods
Sprache: Englisch
Autorenschaft: Müller, Thorsten 
Kruppa, Kai 
Lichtenberg, Gerwald  
Réhault, Nicolas 
Herausgeber*In: Maquin, Didier 
Schlagwörter: Fault detection; Qualitative models; Stochastic automata; Tensor decomposition; Heat exchangers
Erscheinungsdatum: 2015
Verlag: Elsevier
Zeitschrift oder Schriftenreihe: IFAC-PapersOnLine 
Zeitschriftenband: 48
Zeitschriftenausgabe: 21
Anfangsseite: 416
Endseite: 421
Konferenz: IFAC Symposium on Fault Detection, Supervision andSafety for Technical Processes 2015 
Zusammenfassung: 
The paper shows how a fault diagnosis algorithm based on stochastic automata as qualitative models can be improved by tensor decomposition methods to make it applicable to complex discrete-time systems. While exponential growth of the number of transitions of the automaton with the number of states, inputs and outputs of the system can in principle not be avoided, matrix representations of the automaton can be reduced by exploiting the underlying tensor structure of the behaviour relation. For non-negative CP tensor decomposition, algorithms are available that can be tuned by defining an order of the approximation. The example of a heat exchanger shows the applicability of the proposed method in situations where real measurement data of the nominal behaviour are available and the modelling effort has to be small.
URI: http://hdl.handle.net/20.500.12738/513
ISSN: 2405-8963
Einrichtung: Department Medizintechnik 
Fakultät Life Sciences 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

102
checked on 26.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.