Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Supervisory control of a combined heat and power plant by economic optimization
Sprache: Englisch
Autorenschaft: Delikaya, Mustafa Göksel 
Erscheinungsdatum: 4-Aug-2015
Zusammenfassung: 
Using combined heat and power (CHP) units within district heating systems (DHS) has been an effective way of meeting residential energy demand in Germany. Generally speaking, electricity fed in to the grid by the CHP is usually sold at a fixed price in today’s electricity market. Assuming that the share of renewable energies will be higher in the near future, it can be anticipated that the electricity prices will highly fluctuate due to the uncertainties within the renewable energy sources, such as wind speed and solar irradiance. Therefore, control mechanisms for heat and power producing plants are expected to switch their operation strategy from heat-driven to power-driven operation. A power-driven operation makes sure that the CHPs are shut down when the electricity market is not competitive enough to produce electricity. In this master’s thesis, a power-driven operation is achieved through an economic optimization. The optimization problem, which is formulated as a discrete optimization problem, is to find out the best ON/OFF operation trajectory of the units involved in a DHS; namely a CHP, a boiler and a storage tank. A simplified model capturing the power-based dynamics of a physical DHS model is implemented at simulation and modeling tool Dymola (Dynamic Modeling Laboratory). Optimization tool GenOpt (Generic Optimization Program) with particle swarm optimization (PSO) algorithm is used to solve the discrete optimization problem. The implementation of the model is verified by several test cases. Finally, a future scenario of the year 2023 is approximated in order to compare the financial gains and grid interactivity of the power-driven and the heat-driven operation. In addition, the effect of varying the storage size on plant gains and grid interactivity is investigated and discussed.
URI: http://hdl.handle.net/20.500.12738/7079
Einrichtung: Department Umwelttechnik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Masterarbeit
Hauptgutachter*in: Lichtenberg, Gerwald  
Gutachter*in der Arbeit: Elci, Mehmet 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Mustafa_Goeksel_Delikaya_MA.pdf2.21 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

161
checked on 13.01.2025

Download(s)

107
checked on 13.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.