Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorvon Luck, Kai-
dc.contributor.authorAnders, Lucas
dc.date.accessioned2020-09-29T14:51:41Z-
dc.date.available2020-09-29T14:51:41Z-
dc.date.created2018
dc.date.issued2018-12-14
dc.identifier.urihttp://hdl.handle.net/20.500.12738/8528-
dc.description.abstractDie kurzfristige Prognose des Energiebedarfs ist für Energieversorger ein interessanter Anwendungsfall und kritischer Bestandteil eines effizienten Energiemanagementsystems. In dieser Arbeit wird ein intelligentes Vorhersagemodell entwickelt, welches den Gesamtenergiebedarf eines abgelegenen Forschungsgebäudes auf der Basis von realen und multidimensionalen Sensordaten prognostizieren kann. Die verwendeten Daten entstammen der Polarforschungsstation Neumayer III. Dabei werden verschiedene zeitreihenbasierte Deep-Learning-Verfahren eingesetzt und evaluiert.de
dc.description.abstractPredicting the short-term energy consumption is an interesting use case for energy providers and crucial for an efficient energy management system. This thesis implements an intelligent model which predicts short-term energy demands based on real and multivariate sensor data. The dataset is taken from the antarctic research facility Neumayer III. Different deep learning models for time series prediction are applied and evaluated.en
dc.language.isodede
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subjectDeep-Learningde
dc.subjectMachine-Learningde
dc.subjectZeitreihendatende
dc.subjectSensordatende
dc.subjectLong-Short-Term-Memory-Networksde
dc.subjectDeep learningen
dc.subjectMachine Learningen
dc.subjectTime-Series Dataen
dc.subjectSensor Dataen
dc.subjectLong-Short-Term-Memory-Networksen
dc.subject.ddc004 Informatik
dc.titleDeep Learning zur Vorhersage des Energiebedarfs der antarktischen Forschungsstation Neumayer IIIde
dc.title.alternativeDeep Learning for energy consumption prediction of the antarctic research facility Neumayer IIIen
dc.typeThesis
openaire.rightsinfo:eu-repo/semantics/openAccess
thesis.grantor.departmentDepartment Informatik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionHochschule für angewandte Wissenschaften Hamburg
tuhh.contributor.refereeTiedemann, Tim-
tuhh.gvk.ppn1043290966
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-85306-
tuhh.note.externpubl-mit-pod
tuhh.note.intern1
tuhh.oai.showtrueen_US
tuhh.opus.id4457
tuhh.publication.instituteDepartment Informatik
tuhh.type.opusBachelor Thesis-
dc.subject.gndDeep learning
dc.subject.gndMaschinelles Lernen
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisbachelorThesis
dcterms.DCMITypeText-
tuhh.dnb.statusdomain-
item.creatorGNDAnders, Lucas-
item.fulltextWith Fulltext-
item.creatorOrcidAnders, Lucas-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.advisorGNDvon Luck, Kai-
item.languageiso639-1de-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypeThesis-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
bachelor_thesis_anders.pdf1.75 MBAdobe PDFView/Open
Show simple item record

Page view(s)

157
checked on Dec 26, 2024

Download(s)

235
checked on Dec 26, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.