
Lizenz: | ![]() |
Titel: | Stochastic optimization of synthetic data for neural net based 3d face synthesis |
Sprache: | Englisch |
Autorenschaft: | Scholz, Jan |
Schlagwörter: | generative modelling; deep neural networks; generative adversarial network; gaussian mixture model; regression; principal component analysis |
Erscheinungsdatum: | 9-Apr-2019 |
Zusammenfassung: | In dieser Arbeit wird das Basel Face Model 2017 (BFM) im Hinblick auf die Generierung von Lerndaten für Regressions-Netze untersucht. Ein Regressions-Netz wird erstellt das aus Eingabebildern von Gesichtern Parametervektoren für das BFM erstellt. Diese Parametervektoren sind eine vergleichsweise nierdig dimensionale Repräsentation von Gesichtern die dann in einem nächsten Schritt als Pointcloud od... In this work, the Basel Face Model 2017 (BFM) will be examined with regard to the generation of learning data for a regression network. A regression network is created that infers parameter vectors for the BFM from input images of faces. These parameter vectors are a comparably low dimensional representation of faces which can then be provided in a next step as point cloud or mesh. The regression ... |
URI: | http://hdl.handle.net/20.500.12738/8653 |
Einrichtung: | Department Informatik |
Dokumenttyp: | Abschlussarbeit |
Abschlussarbeitentyp: | Masterarbeit |
Hauptgutachter*in: | Meisel, Andreas |
Gutachter*in der Arbeit: | Jenke, Philipp |
Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Master_Arbeit_vektor.pdf | 23.47 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.