Fulltext available Open Access
License: 
Title: Stabilisierung unkontrollierter Flugzustände mit Reinforcement Learning
Other Titles: Stabilization of uncontrolled flight states with reinforcement learning
Language: German
Authors: Rohden, Andre 
Keywords: reinforcement learning; deep deterministic policy gradient; experience replay memory; curriculum learning; quadcopter
Issue Date: 17-Apr-2019
Abstract: 
Reinforcement Learning ermöglicht einem selbstlernenden Agenten ein unbemanntes Flugobjekt in unkontrollierten Flugzuständen zu stabilisieren. Um dies zu erreichen, wird ein Deep Deterministic Policy Gradient Algorithmus angewendet. Durch Erweiterung wie Experience Replay Speicher, parametrisiertem Rauschen, Prioritized Experience Replay, Hindsight Experience Replay und Curriculum Learning lassen sich darüberhinaus Umgegebung mit sparse Reward trainieren.

Reinforcement learning allows a self-learning agent to stabilize an unmanned aerial vehicle in uncontrolled flight states. To achieve this, a deep deterministic policy gradient algorithm is applied. Through extensions like experience replay memory, parameterized noise, prioritized experience replay, hindsight experience replay and curriculum learning, it is furthermore possible to train environments with sparse reward.
URI: http://hdl.handle.net/20.500.12738/8674
Institute: Department Informatik 
Type: Thesis
Thesis type: Master Thesis
Advisor: Meisel, Andreas 
Referee: Fohl, Wolfgang 
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat
masterthesis_rohden.pdf18.29 MBAdobe PDFView/Open
Show full item record

Page view(s)

139
checked on Jan 14, 2025

Download(s)

193
checked on Jan 14, 2025

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.