Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorLichtenberg, Gerwald-
dc.contributor.authorRichter, Jörg Michael Dietrich-
dc.date.accessioned2020-09-29T15:12:35Z-
dc.date.available2020-09-29T15:12:35Z-
dc.date.created2018-
dc.date.issued2019-09-05-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/8845-
dc.description.abstractIn this thesis a multiobjective tuning of a linear state signal shaping model predictive control (LSSSMPC) controller is implemented in an electrical distribution grid to provide power quality services. The tuning is done using the evolutionary algorithm Multiobjective Differential Evolution with Spherical Pruning X (spMODEx). Two research questions are addressed. In the first stage the reproducibility of the spMODEx algorithm, when approximating the Pareto Front, as the solution to the multiobjective problem statement, is addressed. The assessment is realized by means of singular value decomposition, and additionally by a novel approach the activated volume method, first reported herein. In the second stage a decision making strategy is developed to find the best controller parameters in a reasonable amount of time. Controller and plant are operated in a mismatch. The controller operates on a conventional linear state space model, while the plant simulation is done by a four mode switched system to adequately model the behavior of non–linear loads. The thesis concludes with the outcomes on the reproducibility of spMODEx algorithm, the activated volume method, and recommendations for a successful multiobjective optimization and decision making process to ensure tuning parameters that allow the LSSSMPC controller to provide optimal power quality services.en
dc.language.isoenen_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc600: Techniken_US
dc.titleModel Predictive Controller Tuning in Electrical Distribution Grids by Multiobjective Optimizationen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Umwelttechniken_US
thesis.grantor.departmentFakultät Life Sciencesen_US
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionHochschule für angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereePangalos, Georg-
tuhh.gvk.ppn1663170576
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-88477-
tuhh.note.externpubl-mit-pod
tuhh.note.intern1
tuhh.oai.showtrueen_US
tuhh.opus.id4947
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteDepartment Umwelttechniken_US
tuhh.type.opusMasterarbeit-
dc.subject.gndVerteilungsnetz
dc.subject.gndElektrische Energieverteilung
dc.subject.gndElektrizitätsversorgungsnetz
dc.subject.gndOptimierung
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesismasterThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.grantfulltextopen-
item.creatorGNDRichter, Jörg Michael Dietrich-
item.cerifentitytypePublications-
item.creatorOrcidRichter, Jörg Michael Dietrich-
item.advisorGNDLichtenberg, Gerwald-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
RichterJoerg_geschwaerzt.pdf3.81 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

177
checked on 03.04.2025

Download(s)

160
checked on 03.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.