DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | von Luck, Kai | - |
dc.contributor.author | Braatz, Aaron | |
dc.date.accessioned | 2020-09-29T15:33:09Z | - |
dc.date.available | 2020-09-29T15:33:09Z | - |
dc.date.created | 2019 | |
dc.date.issued | 2019-10-25 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12738/9152 | - |
dc.description.abstract | Raumzeitliches Data-Mining findet in fast allen Big-Data-Systemen Anwendung. Zu jedem generierten Datenpunkt werden auch Metadaten gespeichert. Diese enthalten Informationen über den Ort und Zeitpunkt der Generierung. In dieser Arbeit wird der Feinstaubdatensatz von luftdaten.info benutzt. Die Daten werden über ein großes dynamisches Sensorsystem in einem Crowd-Sensing-Kontext erhoben. An diesen dynamischen zeitreihenbasierten Realdaten werden verschiedene raumzeitliche Data-Mining-Verfahren angewendet und evaluiert. | de |
dc.description.abstract | Space-time data mining is used in almost all big data systems. Metadata is also stored for each generated data point. These contain information about the place and time of generation. In this work the particulate matter data set of luftdaten.info is analysed. The data is collected via a large dynamic sensor system in a crowd-sensing context. Different spatiotemporal data mining methods are used and evaluated on these dynamic time series based real data. | en |
dc.language.iso | de | de |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | - |
dc.subject.ddc | 004 Informatik | |
dc.title | Raumzeitliches Data-Mining in dynamischen Sensorsystemen | de |
dc.title.alternative | Space-time data mining in dynamic sensor systems | en |
dc.type | Thesis | |
openaire.rights | info:eu-repo/semantics/openAccess | |
thesis.grantor.department | Department Informatik | |
thesis.grantor.place | Hamburg | |
thesis.grantor.universityOrInstitution | Hochschule für angewandte Wissenschaften Hamburg | |
tuhh.contributor.referee | Tiedemann, Tim | - |
tuhh.gvk.ppn | 1680025074 | |
tuhh.identifier.urn | urn:nbn:de:gbv:18302-reposit-91542 | - |
tuhh.note.extern | publ-mit-pod | |
tuhh.note.intern | 1 | |
tuhh.oai.show | true | en_US |
tuhh.opus.id | 5237 | |
tuhh.publication.institute | Department Informatik | |
tuhh.type.opus | Bachelor Thesis | - |
dc.subject.gnd | Data Mining | |
dc.subject.gnd | Maschinelles Lernen | |
dc.type.casrai | Supervised Student Publication | - |
dc.type.dini | bachelorThesis | - |
dc.type.driver | bachelorThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | |
dc.type.thesis | bachelorThesis | |
dcterms.DCMIType | Text | - |
tuhh.dnb.status | domain | - |
item.creatorGND | Braatz, Aaron | - |
item.fulltext | With Fulltext | - |
item.creatorOrcid | Braatz, Aaron | - |
item.grantfulltext | open | - |
item.cerifentitytype | Publications | - |
item.advisorGND | von Luck, Kai | - |
item.languageiso639-1 | de | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.openairetype | Thesis | - |
Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
Bachelor_Aaron_Braatz.pdf | 2.24 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.