License: | Title: | Raumzeitliches Data-Mining in dynamischen Sensorsystemen | Other Titles: | Space-time data mining in dynamic sensor systems | Language: | German | Authors: | Braatz, Aaron | Issue Date: | 25-Oct-2019 | Abstract: | Raumzeitliches Data-Mining findet in fast allen Big-Data-Systemen Anwendung. Zu jedem generierten Datenpunkt werden auch Metadaten gespeichert. Diese enthalten Informationen über den Ort und Zeitpunkt der Generierung. In dieser Arbeit wird der Feinstaubdatensatz von luftdaten.info benutzt. Die Daten werden über ein großes dynamisches Sensorsystem in einem Crowd-Sensing-Kontext erhoben. An diesen dynamischen zeitreihenbasierten Realdaten werden verschiedene raumzeitliche Data-Mining-Verfahren angewendet und evaluiert. Space-time data mining is used in almost all big data systems. Metadata is also stored for each generated data point. These contain information about the place and time of generation. In this work the particulate matter data set of luftdaten.info is analysed. The data is collected via a large dynamic sensor system in a crowd-sensing context. Different spatiotemporal data mining methods are used and evaluated on these dynamic time series based real data. |
URI: | http://hdl.handle.net/20.500.12738/9152 | Institute: | Department Informatik | Type: | Thesis | Thesis type: | Bachelor Thesis | Advisor: | von Luck, Kai | Referee: | Tiedemann, Tim |
Appears in Collections: | Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Bachelor_Aaron_Braatz.pdf | 2.24 MB | Adobe PDF | View/Open |
Note about this record
Export
Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.