Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Optimierung rekurrenter neuronaler Netze durch genetische Algorithmen derNEAT-Familie
Sprache: Deutsch
Autorenschaft: Kessener, Daniel 
Erscheinungsdatum: 13-Jan-2020
Zusammenfassung: 
In dieser Arbeit wird die Eignung verschiedener Genetischer Algorithmen der NEAT-Familie für die Optimierung rekurrenter neuronaler Netze untersucht. Dabei werden konkret klassisches NEAT und ES-HyperNEAT in Augenschein genommen. Beide GAs werden mit verschiedenen RNN-Architekturen kombiniert. Konkret werden Long Short-Term Memory und Gated Recurrent Units with Memory Block verwendet. Es werden drei Untersuchungen mit verschiedenen Komplexitätsgraden und Ansprüche an das Erinnerungsvermögen der Agenten durchgeführt, die zeigen, dass GAs sich grundsätzlich gut zum Optimieren von RNNs eignen.

This paper tests how suited different Genetic Algorithms from the NEAT-family of GAs are to optimize recurrent artificial neural networks. Specifically this paper looks at classic NEAT and ES-HyperNEAT. Both GAs are combined with different RNN architectures - specifically Long Short-Term Memory and Gated Recurrent Units with Memory Block - and subjected to three tests of varying complexities and demands on the memory of the agents. It can be shown that GAs are able to optimize RNN reasonably well.
URI: http://hdl.handle.net/20.500.12738/9274
Einrichtung: Department Informatik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Bachelorarbeit
Hauptgutachter*in: Neitzke, Michael 
Gutachter*in der Arbeit: Pareigis, Stephan  
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
thesis.pdf1.53 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

407
checked on 27.12.2024

Download(s)

501
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.