DC ElementWertSprache
dc.contributor.authorKinkeldey, Christoph-
dc.contributor.authorKorjakow, Tim-
dc.contributor.authorBenjamin, Jesse Josua-
dc.date.accessioned2022-11-11T13:44:51Z-
dc.date.available2022-11-11T13:44:51Z-
dc.date.issued2019-
dc.identifier.isbn9783038680918en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/13449-
dc.description.abstractInterpretation of machine learning results is a major challenge for non-technical experts, with visualization being a common approach to support this process. For instance, interpretation of clustering results is usually based on scatterplots that provide information about cluster characteristics implicitly through the relative location of objects. However, the locations and distances tend to be distorted because of artifacts stemming from dimensionality reduction. This makes interpretation of clusters difficult and may lead to distrust in the system. Most existing approaches that counter this drawback explain the distances in the scatterplot (e.g., error visualization) to foster the interpretability of implicit information. Instead, we suggest explicit visualization of the uncertainty related to the information needed for interpretation, specifically the uncertain membership of each object to its cluster. In our approach, we place objects on a grid, and add a continuous “topography” in the background, expressing the distribution of uncertainty over all clusters. We motivate our approach from a use case in which we visualize research projects, clustered by topics extracted from scientific abstracts. We hypothesize that uncertainty visualization can increase trust in the system, which we specify as an emergent property of interaction with an interpretable system. We present a first prototype and outline possible procedures for evaluating if and how the uncertainty visualization approach affects interpretability and trust.en
dc.language.isoenen_US
dc.publisherEurographics Associationen_US
dc.subject.ddc004: Informatiken_US
dc.titleTowards supporting interpretability of clustering results with uncertainty visualizationen
dc.typeinProceedingsen_US
dc.relation.conferenceEuroVis Workshop on Trustworthy Visualization 2019en_US
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorKosara, Robert-
local.contributorPerson.editorLawonn, Kai-
local.contributorPerson.editorLinsen, Lars-
local.contributorPerson.editorSmit, Noeska-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFreie Universität Berlinen_US
tuhh.publisher.doi10.2312/trvis.20191183-
tuhh.relation.ispartofseriesTrustVis 2019 : EuroVis Workshop on Trustworthy Visualizationen_US
tuhh.type.opusInProceedings (Aufsatz / Paper einer Konferenz etc.)-
dc.type.casraiConference Paper-
dc.type.dinicontributionToPeriodical-
dc.type.drivercontributionToPeriodical-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
item.seriesrefTrustVis 2019 : EuroVis Workshop on Trustworthy Visualization-
item.tuhhseriesidTrustVis 2019 : EuroVis Workshop on Trustworthy Visualization-
item.creatorGNDKinkeldey, Christoph-
item.creatorGNDKorjakow, Tim-
item.creatorGNDBenjamin, Jesse Josua-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_5794-
item.creatorOrcidKinkeldey, Christoph-
item.creatorOrcidKorjakow, Tim-
item.creatorOrcidBenjamin, Jesse Josua-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeinProceedings-
crisitem.author.deptDepartment Information und Medienkommunikation-
crisitem.author.orcid0000-0001-5669-6295-
crisitem.author.parentorgFakultät Design, Medien und Information-
Enthalten in den Sammlungen:Publications without full text
Zur Kurzanzeige

Seitenansichten

68
checked on 29.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.