DC ElementWertSprache
dc.contributor.authorSarku, Rebecca-
dc.contributor.authorClemen, Ulfia A.-
dc.contributor.authorClemen, Thomas-
dc.date.accessioned2023-10-27T14:07:36Z-
dc.date.available2023-10-27T14:07:36Z-
dc.date.issued2023-10-23-
dc.identifier.issn2077-0472en_US
dc.identifier.urihttp://hdl.handle.net/20.500.12738/14301-
dc.description.abstractEmerging technologies associated with Artificial Intelligence (AI) have enabled improvements in global food security situations. However, there is a limited understanding regarding the extent to which stakeholders are involved in AI modelling research for food security purposes. This study systematically reviews the existing literature to bridge the knowledge gap in AI and food security, focusing on software modelling perspectives. The study found the application of AI models to examine various indicators of food security across six continents, with most studies conducted in sub-Saharan Africa. While research organisations conducting AI modelling were predominantly based in Europe or the Americas, their study communities were in the Global South. External funders also supported AI modelling research on food security through international universities and research institutes, although some collaborations with local organisations and external partners were identified. The analysis revealed three patterns in the application of AI models for food security research: (1) the exclusive utilisation of AI models to assess food security situations, (2) stakeholder involvement in some aspects of the AI modelling process, and (3) stakeholder involvement in AI modelling for food security through an iterative process. Overall, studies on AI models for food security were primarily experimental and lacked real-life implementation of the results with stakeholders. Consequently, this study concluded that research on AI, which incorporates feedback and/or the implementation of research outcomes for stakeholders, can contribute to learning and enhance the validity of the models in addressing food security challenges.en
dc.description.sponsorshipHochschule für Angewandte Wissenschaften Hamburgen_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofAgricultureen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectfood securityen_US
dc.subjectmachine learningen_US
dc.subjectGlobal Southen_US
dc.subjectfundingen_US
dc.subject.ddc004: Informatiken_US
dc.titleThe application of artificial intelligence models for food security : a reviewen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.1072-
dc.description.versionPeerRevieweden_US
local.contributorPerson.editorYuan, Jin-
local.contributorPerson.editorHuang, Zichen-
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.issue10en_US
tuhh.container.volume13en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-163959-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungsgruppe Multi-Agenten Systeme und Data Scienceen_US
tuhh.publisher.doi10.3390/agriculture13102037-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber2037en_US
local.comment.externalSarku, R.; Clemen, U.A.; Clemen, T. The Application of Artificial Intelligence Models for Food Security: A Review. Agriculture 2023, 13, 2037. https://doi.org/10.3390/agriculture13102037. The APC was funded by Hamburg University of Applied Sciences.en_US
tuhh.apc.statustrueen_US
item.creatorGNDSarku, Rebecca-
item.creatorGNDClemen, Ulfia A.-
item.creatorGNDClemen, Thomas-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorOrcidSarku, Rebecca-
item.creatorOrcidClemen, Ulfia A.-
item.creatorOrcidClemen, Thomas-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeArticle-
crisitem.author.deptDepartment Informatik-
crisitem.author.deptDepartment Informatik-
crisitem.author.orcid0000-0002-4425-7241-
crisitem.author.orcid0000-0002-8200-5141-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications with full text
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
agriculture-13-02037.pdf1.51 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

429
checked on 21.11.2024

Download(s)

230
checked on 21.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons