Verlagslink DOI: | 10.1016/j.clscn.2022.100068 | Titel: | Explanatory factors for variation in supplier sustainability performance in the automotive sector : a quantitative analysis | Sprache: | Englisch | Autorenschaft: | Bartos, Kristina Encinas Schwarzkopf, Julia Mueller, Martin Hofmann-Stölting, Christina |
Schlagwörter: | Automotive; Self-assessment tool; Supplier sustainability performance; Sustainability requirements; Sustainable supply chain management | Erscheinungsdatum: | 2022 | Verlag: | Elsevier | Zeitschrift oder Schriftenreihe: | Cleaner logistics and supply chain | Zeitschriftenband: | 5 | Zusammenfassung: | This article analyses differences in sustainability performances across supplier groups in the automotive industry using a multiple regression approach. The supplier sustainability performance is proxied by the self-assessment questionnaire (SAQ), a document-based assessment tool widely used in the automotive industry. The supplier groups are divided according to their headcount, business category and the region suppliers are located in. The analysis shows that the sustainability performance increases significantly with a supplier's headcount. Furthermore, it shows that manufacturing suppliers perform significantly better compared to service providers. While there exist regional performance differences, the development stage of a country is found to be only a small significant factor influencing suppliers’ sustainability performances. Our results suggest OEM requirements in their assessments to be a major driver for supplier sustainability performance and that further analysis of regional factors is necessary. |
URI: | http://hdl.handle.net/20.500.12738/14897 | ISSN: | 2772-3909 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Wirtschaft Fakultät Wirtschaft und Soziales |
Dokumenttyp: | Zeitschriftenbeitrag |
Enthalten in den Sammlungen: | Publications without full text |
Zur Langanzeige
Volltext ergänzen
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons