Title: | Exploration of Reinforcement Learning Methods when Training a Dice Game Playing Agent | Language: | English | Authors: | Alushi, Klejda | Keywords: | Artificial Intelligence; Deep Learning; Reinforcement Learning; Dice Game; Advantage Actor Critic | Issue Date: | 26-Jul-2024 | Abstract: | This thesis will use different reinforcement learning algorithms to train a neural network to play a dice game. It will analyse how these algorithms are influenced by stochastic processes and by the dimensions of the neural network. Diese Bachelorarbeit wird verschiedene Reinforcement-Learning-Algorithmen verwenden, um ein neuronales Netzwerk darauf zu trainieren, ein Wuerfelspiel zu spielen. Es wird analysiert, wie diese Algorithmen durch stochastische Prozesse und durch die Dimensionen des neuronalen Netzes beeinflusst werden. |
URI: | https://hdl.handle.net/20.500.12738/16102 | Institute: | Fakultät Technik und Informatik Department Informations- und Elektrotechnik |
Type: | Thesis | Thesis type: | Bachelor Thesis | Advisor: | Hensel, Marc | Referee: | Herster, Ulrike |
Appears in Collections: | Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
BA_Exploration_Reinforcement_Learning_Methods.pdf | 2.03 MB | Adobe PDF | View/Open |
Note about this record
Export
Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.