DC Element | Wert | Sprache |
---|---|---|
dc.contributor.advisor | Hensel, Marc | - |
dc.contributor.author | Alushi, Klejda | - |
dc.date.accessioned | 2024-07-30T10:20:08Z | - |
dc.date.available | 2024-07-30T10:20:08Z | - |
dc.date.created | 2022-10-27 | - |
dc.date.issued | 2024-07-26 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.12738/16102 | - |
dc.description.abstract | This thesis will use different reinforcement learning algorithms to train a neural network to play a dice game. It will analyse how these algorithms are influenced by stochastic processes and by the dimensions of the neural network. | en |
dc.description.abstract | Diese Bachelorarbeit wird verschiedene Reinforcement-Learning-Algorithmen verwenden, um ein neuronales Netzwerk darauf zu trainieren, ein Wuerfelspiel zu spielen. Es wird analysiert, wie diese Algorithmen durch stochastische Prozesse und durch die Dimensionen des neuronalen Netzes beeinflusst werden. | de |
dc.language.iso | en | en_US |
dc.subject | Artificial Intelligence | en_US |
dc.subject | Deep Learning | en_US |
dc.subject | Reinforcement Learning | en_US |
dc.subject | Dice Game | en_US |
dc.subject | Advantage Actor Critic | en_US |
dc.subject.ddc | 004: Informatik | en_US |
dc.title | Exploration of Reinforcement Learning Methods when Training a Dice Game Playing Agent | en |
dc.type | Thesis | en_US |
openaire.rights | info:eu-repo/semantics/openAccess | en_US |
thesis.grantor.department | Fakultät Technik und Informatik | en_US |
thesis.grantor.department | Department Informations- und Elektrotechnik | en_US |
thesis.grantor.universityOrInstitution | Hochschule für Angewandte Wissenschaften Hamburg | en_US |
tuhh.contributor.referee | Herster, Ulrike | - |
tuhh.identifier.urn | urn:nbn:de:gbv:18302-reposit-191154 | - |
tuhh.oai.show | true | en_US |
tuhh.publication.institute | Fakultät Technik und Informatik | en_US |
tuhh.publication.institute | Department Informations- und Elektrotechnik | en_US |
tuhh.type.opus | Bachelor Thesis | - |
dc.type.casrai | Supervised Student Publication | - |
dc.type.dini | bachelorThesis | - |
dc.type.driver | bachelorThesis | - |
dc.type.status | info:eu-repo/semantics/publishedVersion | en_US |
dc.type.thesis | bachelorThesis | en_US |
dcterms.DCMIType | Text | - |
tuhh.dnb.status | domain | en_US |
item.advisorGND | Hensel, Marc | - |
item.creatorGND | Alushi, Klejda | - |
item.languageiso639-1 | en | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_46ec | - |
item.creatorOrcid | Alushi, Klejda | - |
item.fulltext | With Fulltext | - |
item.grantfulltext | open | - |
item.openairetype | Thesis | - |
Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
BA_Exploration_Reinforcement_Learning_Methods.pdf | 2.03 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.