Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorHensel, Marc-
dc.contributor.authorAlushi, Klejda-
dc.date.accessioned2024-07-30T10:20:08Z-
dc.date.available2024-07-30T10:20:08Z-
dc.date.created2022-10-27-
dc.date.issued2024-07-26-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16102-
dc.description.abstractThis thesis will use different reinforcement learning algorithms to train a neural network to play a dice game. It will analyse how these algorithms are influenced by stochastic processes and by the dimensions of the neural network.en
dc.description.abstractDiese Bachelorarbeit wird verschiedene Reinforcement-Learning-Algorithmen verwenden, um ein neuronales Netzwerk darauf zu trainieren, ein Wuerfelspiel zu spielen. Es wird analysiert, wie diese Algorithmen durch stochastische Prozesse und durch die Dimensionen des neuronalen Netzes beeinflusst werden.de
dc.language.isoenen_US
dc.subjectArtificial Intelligenceen_US
dc.subjectDeep Learningen_US
dc.subjectReinforcement Learningen_US
dc.subjectDice Gameen_US
dc.subjectAdvantage Actor Criticen_US
dc.subject.ddc004: Informatiken_US
dc.titleExploration of Reinforcement Learning Methods when Training a Dice Game Playing Agenten
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Technik und Informatiken_US
thesis.grantor.departmentDepartment Informations- und Elektrotechniken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeHerster, Ulrike-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-191154-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informations- und Elektrotechniken_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.advisorGNDHensel, Marc-
item.creatorGNDAlushi, Klejda-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorOrcidAlushi, Klejda-
item.fulltextWith Fulltext-
item.grantfulltextopen-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
BA_Exploration_Reinforcement_Learning_Methods.pdf2.03 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

32
checked on 24.11.2024

Download(s)

55
checked on 24.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.