Verlagslink DOI: 10.1186/s12889-024-17847-w
Titel: Towards an intelligent malaria outbreak warning model based intelligent malaria outbreak warning in the northern part of Benin, West Africa
Sprache: Englisch
Autorenschaft: Gbaguidi, Gouvidé Jean 
Topanou, Nikita 
Leal Filho, Walter  
Ketoh, Guillaume K. 
Schlagwörter: Climate change; Malaria; Northern Benin; Prediction
Erscheinungsdatum: 13-Feb-2024
Verlag: BioMed Central
Zeitschrift oder Schriftenreihe: BMC public health 
Zeitschriftenband: 24
Zeitschriftenausgabe: 1
Zusammenfassung: 
Background: Malaria is one of the major vector-borne diseases most sensitive to climatic change in West Africa. The prevention and reduction of malaria are very difficult in Benin due to poverty, economic insatiability and the non control of environmental determinants. This study aims to develop an intelligent outbreak malaria early warning model driven by monthly time series climatic variables in the northern part of Benin. Methods: Climate data from nine rain gauge stations and malaria incidence data from 2009 to 2021 were extracted from the National Meteorological Agency (METEO) and the Ministry of Health of Benin, respectively. Projected relative humidity and temperature were obtained from the coordinated regional downscaling experiment (CORDEX) simulations of the Rossby Centre Regional Atmospheric regional climate model (RCA4). A structural equation model was employed to determine the effects of climatic variables on malaria incidence. We developed an intelligent malaria early warning model to predict the prevalence of malaria using machine learning by applying three machine learning algorithms, including linear regression (LiR), support vector machine (SVM), and negative binomial regression (NBiR). Results: Two ecological factors such as factor 1 (related to average mean relative humidity, average maximum relative humidity, and average maximal temperature) and factor 2 (related to average minimal temperature) affect the incidence of malaria. Support vector machine regression is the best-performing algorithm, predicting 82% of malaria incidence in the northern part of Benin. The projection reveals an increase in malaria incidence under RCP4.5 and RCP8.5 over the studied period. Conclusion: These results reveal that the northern part of Benin is at high risk of malaria, and specific malaria control programs are urged to reduce the risk of malaria.
URI: https://hdl.handle.net/20.500.12738/16381
ISSN: 1471-2458
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Gesundheitswissenschaften 
Fakultät Life Sciences 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: article number: 450 (2024)
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

138
checked on 21.11.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons