Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.1962
Publisher DOI: 10.1007/s44244-024-00020-y
Title: Masked autoencoder : influence of self-supervised pretraining on object segmentation in industrial images
Language: English
Authors: Witte, Anja 
Lange, Sascha 
Lins, Christian  
Keywords: Masked autoencoder; Self-supervised pretraining; Semantic segmentation; UNETR; Label-efficiency; Log- yard cranes
Issue Date: 23-Aug-2024
Publisher: Springer
Journal or Series Name: Industrial artificial intelligence 
Volume: 2
Issue: 1
Abstract: 
The amount of labelled data in industrial use cases is limited because the annotation process is time-consuming and costly. As in research, self-supervised pretraining such as MAE resulted in training segmentation models with fewer labels, this is also an interesting direction for industry. The reduction of required labels is achieved with large amounts of unlabelled images for the pretraining tha...
URI: https://hdl.handle.net/20.500.12738/16387
DOI: 10.48441/4427.1962
ISSN: 2731-667X
Review status: This version was peer reviewed (peer review)
Institute: Department Informatik 
Fakultät Technik und Informatik 
Type: Article
Additional note: Witte, A., Lange, S. & Lins, C. Masked autoencoder: influence of self-supervised pretraining on object segmentation in industrial images. Industrial Artificial Intelligence 2, 7 (2024). https://doi.org/10.1007/s44244-024-00020-y
Appears in Collections:Publications with full text

Files in This Item:
File Description SizeFormat
2024_Witte_MaskedAutoencoder.pdf4.54 MBAdobe PDFView/Open
Show full item record

Page view(s)

87
checked on Apr 4, 2025

Download(s)

35
checked on Apr 4, 2025

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons