Verlagslink DOI: 10.1007/s44244-024-00020-y
Titel: Masked autoencoder : influence of self-supervised pretraining on object segmentation in industrial images
Sprache: Englisch
Autorenschaft: Witte, Anja 
Lange, Sascha 
Lins, Christian  
Schlagwörter: Masked autoencoder; Self-supervised pretraining; Semantic segmentation; UNETR; Label-efficiency; Log- yard cranes
Erscheinungsdatum: 23-Aug-2024
Verlag: Springer
Zeitschrift oder Schriftenreihe: Industrial artificial intelligence 
Zeitschriftenband: 2
Zeitschriftenausgabe: 1
Zusammenfassung: 
The amount of labelled data in industrial use cases is limited because the annotation process is time-consuming and costly. As in research, self-supervised pretraining such as MAE resulted in training segmentation models with fewer labels, this is also an interesting direction for industry. The reduction of required labels is achieved with large amounts of unlabelled images for the pretraining tha...
URI: https://hdl.handle.net/20.500.12738/16387
DOI: 10.48441/4427.1962
ISSN: 2731-667X
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: Witte, A., Lange, S. & Lins, C. Masked autoencoder: influence of self-supervised pretraining on object segmentation in industrial images. Industrial Artificial Intelligence 2, 7 (2024). https://doi.org/10.1007/s44244-024-00020-y
Enthalten in den Sammlungen:Publications with full text

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
2024_Witte_MaskedAutoencoder.pdf4.54 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

98
checked on 29.07.2025

Download(s)

39
checked on 29.07.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons