Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.2031
DC FieldValueLanguage
dc.contributor.authorSubadra, Sharath P.-
dc.contributor.authorMayer, Eduard-
dc.contributor.authorWachtel, Philipp-
dc.contributor.authorSheikhi, Shahram-
dc.date.accessioned2024-11-18T16:23:02Z-
dc.date.available2024-11-18T16:23:02Z-
dc.date.issued2024-10-31-
dc.identifier.issn1878-6669en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16520-
dc.description.abstractThe geometry of objects by means of wire arc additive manufacturing technology (WAAM) is a function of the quality of the deposited layers. The process parameters variation and heat flow affect the geometric precision of the parts, when compared to the actual dimensions. Therefore, in situ geometry monitoring which is integrated in such a way to enable a backward control model is essential in the WAAM process. In this article, an attempt is made to study the effect of four input variables, namely voltage (U), welding current (I), travel speed and wire feed rate on the output function in the form of two geometrical characteristics of a single weld bead. These output functions which are determinant of the weld quality are width of weld bead (BW) and height of weld bead (BH). A machine learning approach is utilised to predict the bead dimensions based on the input parameters and to predict the parameters by assigning suitable scores. For predicting the bead dimensions, two models, namely linear regression and random forest, shall be utilised, whereas for the purpose of classification based on weld parameters, k-nearest neighbours model shall be employed. Through this work, a wide dataset of parameters in the form of input variable and output in the form bead dimensions are generated for 316LSi filler material which shall be used as a training data for a machine learning algorithm. Subsequently, the predicted parameters shall be cross-checked with actual parameters.en
dc.description.sponsorshipForschungszentrum Jülichen_US
dc.description.sponsorshipBundesministerium für Wirtschaft und Klimaschutzen_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofWelding in the worlden_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleFeasibility study on machine learning methods for prediction of process‑related parameters during WAAM process using SS‑316L filler materialen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.2031-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.endpage3214en_US
tuhh.container.issue12en_US
tuhh.container.startpage3205en_US
tuhh.container.volume68en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-197550-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Maschinenbau und Produktionen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteForschungs- und Transferzentrum Intelligent Industrial Innovationsen_US
tuhh.publisher.doi10.1007/s40194-024-01855-w-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.type.rdmtrue-
dc.relation.projectLebensdauersteigerung von additive gefertigten (DED) Bauteilen mittels hybrider Fertigungsverfahrenen_US
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.apc.statusfalseen_US
item.creatorGNDSubadra, Sharath P.-
item.creatorGNDMayer, Eduard-
item.creatorGNDWachtel, Philipp-
item.creatorGNDSheikhi, Shahram-
item.fulltextWith Fulltext-
item.creatorOrcidSubadra, Sharath P.-
item.creatorOrcidMayer, Eduard-
item.creatorOrcidWachtel, Philipp-
item.creatorOrcidSheikhi, Shahram-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.openairetypeArticle-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.deptDepartment Maschinenbau und Produktion-
crisitem.author.orcid0000-0002-7558-638X-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.author.parentorgFakultät Technik und Informatik-
crisitem.project.funderBundesministerium für Wirtschaft und Klimaschutz-
Appears in Collections:Publications with full text
Files in This Item:
File Description SizeFormat
s40194-024-01855-w.pdf1.68 MBAdobe PDFView/Open
Show simple item record

Page view(s)

33
checked on Dec 26, 2024

Download(s)

6
checked on Dec 26, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons