Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.2257
DC FieldValueLanguage
dc.contributor.authorSteinhoff, Leon-
dc.contributor.authorKoschlik, Ann-Kathrin-
dc.contributor.authorArts, Emy-
dc.contributor.authorSoria-Gomez, Maria-
dc.contributor.authorRaddatz, Florian-
dc.contributor.authorKunz, Veit Dominik-
dc.date.accessioned2025-02-14T08:51:28Z-
dc.date.available2025-02-14T08:51:28Z-
dc.date.issued2024-07-12-
dc.identifier.issn1869-5590en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/16958-
dc.description.abstractWith the rapid growth in demand for unmanned aerial vehicles (UAVs), novel maintenance technologies are essential for ensuring automatic, safe, and reliable operations. This study compares two fault detection systems that utilize the acoustic signature of UAV propeller blades for classifying their health state. By employing an acoustic camera with 112 microphones for spatial resolution of sound sources, datasets of acoustic images are generated in three differently reverberating environments for the third octave frequency bands of 6300 Hz, 8000 Hz, 10,000 Hz and 12,500 Hz. A convolutional neural network (CNN) is trained and evaluated with maximum F1-scores of 0.9962 and 0.9745 for two and three propeller health classes, respectively. Furthermore, we propose a second approach based on a linear classification (LC), which utilizes a rotating beamformer for comparison. This approach uses only two sound sources that are identified after the acoustic beamforming of a two-bladed propeller. In comparison, this algorithm detects propeller tip damages without applying a machine learning algorithm and reaches a slightly lower F1-score of 0.9441.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofCEAS aeronautical journal : an official journal of the Council of European Aerospace Societiesen_US
dc.subjectUAV maintenanceen_US
dc.subjectMachine condition monitoringen_US
dc.subjectAcoustic diagnosisen_US
dc.subjectNon-destructive testingen_US
dc.subjectMachine learningen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleDevelopment of an acoustic fault diagnosis system for UAV propeller bladesen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.2257-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.endpage893en_US
tuhh.container.issue4en_US
tuhh.container.startpage881en_US
tuhh.container.volume15en_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-206472-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Life Sciencesen_US
tuhh.publication.instituteDepartment Verfahrenstechniken_US
tuhh.publisher.doi10.1007/s13272-024-00752-8-
tuhh.type.opus(wissenschaftlicher) Artikel-
tuhh.type.rdmtrue-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.apc.statusfalseen_US
item.grantfulltextopen-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.fulltextWith Fulltext-
item.creatorGNDSteinhoff, Leon-
item.creatorGNDKoschlik, Ann-Kathrin-
item.creatorGNDArts, Emy-
item.creatorGNDSoria-Gomez, Maria-
item.creatorGNDRaddatz, Florian-
item.creatorGNDKunz, Veit Dominik-
item.creatorOrcidSteinhoff, Leon-
item.creatorOrcidKoschlik, Ann-Kathrin-
item.creatorOrcidArts, Emy-
item.creatorOrcidSoria-Gomez, Maria-
item.creatorOrcidRaddatz, Florian-
item.creatorOrcidKunz, Veit Dominik-
item.cerifentitytypePublications-
crisitem.author.deptDepartment Verfahrenstechnik-
crisitem.author.parentorgFakultät Life Sciences-
Appears in Collections:Publications with full text
Files in This Item:
File Description SizeFormat
s13272-024-00752-8.pdf1.1 MBAdobe PDFView/Open
Show simple item record

Page view(s)

43
checked on Apr 18, 2025

Download(s)

14
checked on Apr 18, 2025

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons