Verlagslink DOI: 10.1103/PhysRevResearch.6.013265
Titel: X-ray-induced atomic transitions via machine learning : a computational investigation
Sprache: Englisch
Autorenschaft: Budewig, Laura 
Son, Sang Kil 
Jurek, Zoltan 
Abdullah, Malik Muhammad 
Tropmann-Frick, Marina  
Santra, Robin 
Erscheinungsdatum: 11-Mär-2024
Verlag: American Physical Society
Zeitschrift oder Schriftenreihe: Physical review research 
Zeitschriftenband: 6
Zeitschriftenausgabe: 1
Zusammenfassung: 
Intense x-ray free-electron laser pulses can induce multiple sequences of one-photon ionization and accompanying decay processes in atoms, producing highly charged atomic ions. Considering individual quantum states during these processes provides more precise information about the x-ray multiphoton ionization dynamics than the common configuration-based approach. However, in such a state-resolved approach, extremely huge-sized rate-equation calculations are inevitable. Here we present a strategy that embeds machine-learning models into a framework for atomic state-resolved ionization dynamics calculations. Machine learning is employed for the required atomic transition parameters, whose calculations possess the computationally most expensive steps. We find for argon that both feedforward neural networks and random forest regressors can predict these parameters with acceptable, but limited accuracy. State-resolved ionization dynamics of argon, in terms of charge-state distributions and electron and photon spectra, are also presented. Comparing fully calculated and machine-learning-based results, we demonstrate that the proposed machine-learning strategy works in principle and that the performance, in terms of charge-state distributions and electron and photon spectra, is good. Our work establishes a first step toward accelerating the calculation of atomic state-resolved ionization dynamics induced by high-intensity x rays.
URI: https://hdl.handle.net/20.500.12738/17170
ISSN: 2643-1564
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: article number: 013265
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

4
checked on 22.02.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons