Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorPareigis, Stephan-
dc.contributor.authorRiege, Daniel Leonid-
dc.date.accessioned2025-06-27T07:49:30Z-
dc.date.available2025-06-27T07:49:30Z-
dc.date.created2024-05-16-
dc.date.issued2025-06-27-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/17789-
dc.description.abstractIn dieser Arbeit wird ein Reinforcement-Learning-System im Maßstab 1:87 vorgestellt. Dies umfasst einen digitalen Zwilling mit einer vollständigen Simulation sowie ein tatsächliches, im Maßstab 1:87 skaliertes Auto, das mit einer Kamera, einem Servo und einem Motor ausgestattet ist. Verschiedene Experimente wurden durchgeführt, um die Fähigkeiten der gesamten Gym-Umgebung und einer Reinforcement-Learning-Policy zu testen, die versucht, im realen Umfeld autonom zu fahren, indem Erfahrungen aus der Simulation genutzt werden. Ziel ist es, den Sim-to-Real-Gap zu überbrücken, indem das Training in der realen Welt fortgeführt wird. Die Ergebnisse zeigen, dass die Reinforcement-Learning-Policy das Auto in der Simulation steuern kann, die Anwendung in der realen Welt jedoch noch weiterer Forschung bedarf. Durch die Verwendung eines Encoder-Actor-Setups konnte jedoch der Sim-to-Real-Gap für einen supervised gelernten Actor überbrückt werden.de
dc.description.abstractA 1:87 real-world reinforcement learning system is presented in the scope of this thesis. This includes a digital twin with a full simulation and a real 1:87 scaled car, equipped with a camera, servo and motor. Different experiments were conducted to test the capabilities of the whole gym environment and a reinforcement learning policy, trying to drive autonomously in the real-world by using experience from the simulation. Ultimetaly to bridge the sim-to-real gap by extending the training into the real-world. Results show that while the reinforcement learning policy is able to drive the car in the simulation, the performance in the real-world needs further research. Using an encoder-actor setup, the sim-to-real gap could however be bridged for a supervised learned actor.en
dc.language.isoenen_US
dc.subjectReinforcement Learningen_US
dc.subjectDigitaler Zwillingen_US
dc.subjectAutonomes Fahrenen_US
dc.subjectDigital Twinen_US
dc.subjectAutonomous Drivingen_US
dc.subject.ddc004: Informatiken_US
dc.titleReal-World Reinforcement Learning for Bridging Sim-to-Real Gap in Miniature Autonomyen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentFakultät Technik und Informatiken_US
thesis.grantor.departmentDepartment Informatiken_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeTiedemann, Tim-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-214324-
tuhh.oai.showtrueen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publication.instituteDepartment Informatiken_US
tuhh.type.opusMasterarbeit-
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesismasterThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.creatorGNDRiege, Daniel Leonid-
item.grantfulltextopen-
item.openairetypeThesis-
item.advisorGNDPareigis, Stephan-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.cerifentitytypePublications-
item.creatorOrcidRiege, Daniel Leonid-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Zur Kurzanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.