Verlagslink DOI: 10.5445/KSP/1000178356
Titel: Bulky waste classification from a distance : challenges and first insights
Sprache: Englisch
Autorenschaft: Blum, Fridolin 
Meyer, Philipp  
Lange, Timo 
Trost, Matthis 
Tiedemann, Tim 
Herausgeber*In: Beyerer, Jürgen 
Längle, Thomas 
Heizmann, Michael 
Schlagwörter: Bulky waste; deep learning; material classification; multispectral imaging
Erscheinungsdatum: 2025
Verlag: KIT Scientific Publishing
Buchtitel: OCM 2025 : 7th International Conference on Optical Characterization of Materials : March 26th-27th, 2025 : Karlsruhe, Germany
Teil der Schriftenreihe: Optical Characterization of Materials : Conference proceedings 
Anfangsseite: 285
Endseite: 294
Konferenz: International Conference on Optical Characterization of Materials 2025 
Zusammenfassung: 
Research on autonomous waste detection is primarily focused on conveyor belt systems. Large objects are typically shredded to fit within a conveyor belt system. This work investigates material detection in bulky waste before it is processed by shredders, as sorting large objects before shredding has the potential to improve the recycling process. Multispec-tral cameras are employed to capture high dynamic range images across the ultraviolet, visible, near-infrared, and shortwave infrared spectra. Deep learning techniques are applied for pixel classification and patch segmentation. We evaluate our approach on a small laboratory dataset consisting of 17 images. The results demonstrate that the multispectral imaging approach outperforms RGB-only imaging, achieving a 10% higher accuracy. Furthermore, the study demonstrates that spectral and spatial convolutions enhance the performance of material detection.
URI: https://hdl.handle.net/20.500.12738/17911
ISBN: 978-3-7315-1408-4
ISSN: 2510-7240
Begutachtungsstatus: Diese Version wurde begutachtet (fachspezifisches Begutachtungsverfahren)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

13
checked on 10.08.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons