Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.2730
Fulltext available Open Access
Publisher URL: https://www.vde-verlag.de/buecher/456494/etg-fb-176-etg-kongress-2025.html
Title: AI-based consumption forecast to reduce energy costs for the operation of charging infrastructure in retail
Language: English
Authors: Eger, Kolja  
Krüger, Nick 
Heinrich, Nils 
Editor: Buchholz, Britta 
Other : Energietechnische Gesellschaft 
Issue Date: 2025
Publisher: VDE Verlag
Part of Series: Voller Energie - heute und morgen : ETG-Kongress 2025 : 21.-22. Mai 2025 in Kassel 
Journal or Series Name: ETG-Fachbericht 
Issue: 176
Startpage: 762
Endpage: 768
Project: Senkung von Energiekosten durch Nutzung der Ladevorgänge von Elektrofahrzeugen zur Lastverschiebung 
Conference: ETG-Kongress 2025 
Abstract: 
The buildup of the charging infrastructure in retail significantly changes the load profiles of these energy consumers resulting in higher costs due to power peaks. This paper proposes a new approach for energy management at supermarkets where the cooling processes are used as flexibility. The approach makes use of the time gaps between charging processes to selectively intensify the cooling processes. This energy reserve is used when new charging processes begin. Key capability is a forecast module based on deep learning. The proposed CNN-LSTM model with additional input signals for seasonality and public holidays shows good performance for a short-term prediction over two hours.
URI: https://hdl.handle.net/20.500.12738/18021
DOI: 10.48441/4427.2730
ISBN: 978-3-8007-6495-2
978-3-8007-6494-5
ISSN: 0341-3934
Review status: This version was peer reviewed (peer review)
Institute: Competence Center Erneuerbare Energien und Energieeffizienz 
Department Informations- und Elektrotechnik 
Fakultät Technik und Informatik 
Type: Chapter/Article (Proceedings)
Appears in Collections:Publications with full text

Files in This Item:
File Description SizeFormat
ETG_2025.pdf1.37 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.