Please use this identifier to cite or link to this item:
https://doi.org/10.48441/4427.2730
| Publisher URL: | https://www.vde-verlag.de/buecher/456494/etg-fb-176-etg-kongress-2025.html | Title: | AI-based consumption forecast to reduce energy costs for the operation of charging infrastructure in retail | Language: | English | Authors: | Eger, Kolja Krüger, Nick Heinrich, Nils |
Editor: | Buchholz, Britta | Other : | Energietechnische Gesellschaft | Issue Date: | 2025 | Publisher: | VDE Verlag | Part of Series: | Voller Energie - heute und morgen : ETG-Kongress 2025 : 21.-22. Mai 2025 in Kassel | Journal or Series Name: | ETG-Fachbericht | Issue: | 176 | Startpage: | 762 | Endpage: | 768 | Project: | Senkung von Energiekosten durch Nutzung der Ladevorgänge von Elektrofahrzeugen zur Lastverschiebung | Conference: | ETG-Kongress 2025 | Abstract: | The buildup of the charging infrastructure in retail significantly changes the load profiles of these energy consumers resulting in higher costs due to power peaks. This paper proposes a new approach for energy management at supermarkets where the cooling processes are used as flexibility. The approach makes use of the time gaps between charging processes to selectively intensify the cooling processes. This energy reserve is used when new charging processes begin. Key capability is a forecast module based on deep learning. The proposed CNN-LSTM model with additional input signals for seasonality and public holidays shows good performance for a short-term prediction over two hours. |
URI: | https://hdl.handle.net/20.500.12738/18021 | DOI: | 10.48441/4427.2730 | ISBN: | 978-3-8007-6495-2 978-3-8007-6494-5 |
ISSN: | 0341-3934 | Review status: | This version was peer reviewed (peer review) | Institute: | Competence Center Erneuerbare Energien und Energieeffizienz Department Informations- und Elektrotechnik Fakultät Technik und Informatik |
Type: | Chapter/Article (Proceedings) |
| Appears in Collections: | Publications with full text |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| ETG_2025.pdf | 1.37 MB | Adobe PDF | View/Open |
Note about this record
Export
Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.