DC ElementWertSprache
dc.contributor.authorLilla, Helge-
dc.contributor.authorNiggemann, Oliver-
dc.contributor.authorNetzel, Thomas-
dc.date.accessioned2025-09-01T06:23:05Z-
dc.date.available2025-09-01T06:23:05Z-
dc.date.issued2025-08-29-
dc.identifier.issn1869-5590en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18106-
dc.description.abstractEvidence-based training as part of competency-based training and assessment confronts pilots with unexpected events in realistic scenarios in order to promote problem-solving and adaptability. Linking theory and practice is essential to promote these competencies. To achieve this, a cyber-physical system is presented that enables this through the innovative approach of “deep-linking keywords.” A heuristic scoring function determines a fulfillment score for each keyword. Based on the assessment, scenario-based training is adapted, enabling necessary individualization. Compared to existing systems, the prototype generates a coherent dataset that bridges knowledge work and scenario-based training, allowing for comprehensive scenario adaptation. The cyber-physical system consists of a computer-based training system built on the Django framework, a Basic Instrument Training Device, and flight simulator software, integrated via an application programming interface. After each evidence-based training session, performance data are processed through structured analysis pipelines to extract and evaluate scenario-linked feature vectors. This enables iterative parameter optimization for adaptive scenario control. Building on the prototype and the proven effectiveness of the heuristic scoring function, a large dataset will be compiled, and the rule-based method will be replaced by machine learning to enhance safety, effectiveness, and efficiency in aviation through highly individualized training enabled by an AI-based cyber-physical system.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofCEAS aeronautical journal : an official journal of the Council of European Aerospace Societiesen_US
dc.subjectAI-based CPSen_US
dc.subjectFlight simulationen_US
dc.subjectMachine learningen_US
dc.subjectScenario-based trainingen_US
dc.subjectCBTAen_US
dc.subjectEBTen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleCPS prototype development for AI-based scenario adaptation in flight simulator trainingen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.2797-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.endpage:tbaen_US
tuhh.container.issue:tbaen_US
tuhh.container.startpage:tbaen_US
tuhh.container.volume:tbaen_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-218869-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1007/s13272-025-00870-x-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber:tbaen_US
local.comment.externalLilla, H., Niggemann, O. & Netzel, T. CPS prototype development for AI-based scenario adaptation in flight simulator training. CEAS Aeronaut J (2025). https://doi.org/10.1007/s13272-025-00870-xen_US
tuhh.apc.statusfalseen_US
item.languageiso639-1en-
item.creatorGNDLilla, Helge-
item.creatorGNDNiggemann, Oliver-
item.creatorGNDNetzel, Thomas-
item.cerifentitytypePublications-
item.fulltextWith Fulltext-
item.creatorOrcidLilla, Helge-
item.creatorOrcidNiggemann, Oliver-
item.creatorOrcidNetzel, Thomas-
item.openairetypeArticle-
item.grantfulltextopen-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
crisitem.author.deptDepartment Fahrzeugtechnik und Flugzeugbau-
crisitem.author.parentorgFakultät Technik und Informatik-
Enthalten in den Sammlungen:Publications with full text
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s13272-025-00870-x.pdf1.24 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons