Zitierlink:
https://doi.org/10.48441/4427.2797
Verlagslink DOI: | 10.1007/s13272-025-00870-x | Titel: | CPS prototype development for AI-based scenario adaptation in flight simulator training | Sprache: | Englisch | Autorenschaft: | Lilla, Helge Niggemann, Oliver Netzel, Thomas |
Schlagwörter: | AI-based CPS; Flight simulation; Machine learning; Scenario-based training; CBTA; EBT | Erscheinungsdatum: | 29-Aug-2025 | Verlag: | Springer | Zeitschrift oder Schriftenreihe: | CEAS aeronautical journal : an official journal of the Council of European Aerospace Societies | Zeitschriftenband: | :tba | Zeitschriftenausgabe: | :tba | Anfangsseite: | :tba | Endseite: | :tba | Zusammenfassung: | Evidence-based training as part of competency-based training and assessment confronts pilots with unexpected events in realistic scenarios in order to promote problem-solving and adaptability. Linking theory and practice is essential to promote these competencies. To achieve this, a cyber-physical system is presented that enables this through the innovative approach of “deep-linking keywords.” A heuristic scoring function determines a fulfillment score for each keyword. Based on the assessment, scenario-based training is adapted, enabling necessary individualization. Compared to existing systems, the prototype generates a coherent dataset that bridges knowledge work and scenario-based training, allowing for comprehensive scenario adaptation. The cyber-physical system consists of a computer-based training system built on the Django framework, a Basic Instrument Training Device, and flight simulator software, integrated via an application programming interface. After each evidence-based training session, performance data are processed through structured analysis pipelines to extract and evaluate scenario-linked feature vectors. This enables iterative parameter optimization for adaptive scenario control. Building on the prototype and the proven effectiveness of the heuristic scoring function, a large dataset will be compiled, and the rule-based method will be replaced by machine learning to enhance safety, effectiveness, and efficiency in aviation through highly individualized training enabled by an AI-based cyber-physical system. |
URI: | https://hdl.handle.net/20.500.12738/18106 | DOI: | 10.48441/4427.2797 | ISSN: | 1869-5590 | Begutachtungsstatus: | Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review) | Einrichtung: | Department Fahrzeugtechnik und Flugzeugbau Fakultät Technik und Informatik |
Dokumenttyp: | Zeitschriftenbeitrag | Hinweise zur Quelle: | Lilla, H., Niggemann, O. & Netzel, T. CPS prototype development for AI-based scenario adaptation in flight simulator training. CEAS Aeronaut J (2025). https://doi.org/10.1007/s13272-025-00870-x |
Enthalten in den Sammlungen: | Publications with full text |
Dateien zu dieser Ressource:
Datei | Beschreibung | Größe | Format | |
---|---|---|---|---|
s13272-025-00870-x.pdf | 1.24 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons