Verlagslink DOI: 10.1007/s13272-025-00870-x
Titel: CPS prototype development for AI-based scenario adaptation in flight simulator training
Sprache: Englisch
Autorenschaft: Lilla, Helge 
Niggemann, Oliver 
Netzel, Thomas 
Schlagwörter: AI-based CPS; Flight simulation; Machine learning; Scenario-based training; CBTA; EBT
Erscheinungsdatum: 29-Aug-2025
Verlag: Springer
Zeitschrift oder Schriftenreihe: CEAS aeronautical journal : an official journal of the Council of European Aerospace Societies 
Zeitschriftenband: :tba
Zeitschriftenausgabe: :tba
Anfangsseite: :tba
Endseite: :tba
Zusammenfassung: 
Evidence-based training as part of competency-based training and assessment confronts pilots with unexpected events in realistic scenarios in order to promote problem-solving and adaptability. Linking theory and practice is essential to promote these competencies. To achieve this, a cyber-physical system is presented that enables this through the innovative approach of “deep-linking keywords.” A heuristic scoring function determines a fulfillment score for each keyword. Based on the assessment, scenario-based training is adapted, enabling necessary individualization. Compared to existing systems, the prototype generates a coherent dataset that bridges knowledge work and scenario-based training, allowing for comprehensive scenario adaptation. The cyber-physical system consists of a computer-based training system built on the Django framework, a Basic Instrument Training Device, and flight simulator software, integrated via an application programming interface. After each evidence-based training session, performance data are processed through structured analysis pipelines to extract and evaluate scenario-linked feature vectors. This enables iterative parameter optimization for adaptive scenario control. Building on the prototype and the proven effectiveness of the heuristic scoring function, a large dataset will be compiled, and the rule-based method will be replaced by machine learning to enhance safety, effectiveness, and efficiency in aviation through highly individualized training enabled by an AI-based cyber-physical system.
URI: https://hdl.handle.net/20.500.12738/18106
DOI: 10.48441/4427.2797
ISSN: 1869-5590
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Fahrzeugtechnik und Flugzeugbau 
Fakultät Technik und Informatik 
Dokumenttyp: Zeitschriftenbeitrag
Hinweise zur Quelle: Lilla, H., Niggemann, O. & Netzel, T. CPS prototype development for AI-based scenario adaptation in flight simulator training. CEAS Aeronaut J (2025). https://doi.org/10.1007/s13272-025-00870-x
Enthalten in den Sammlungen:Publications with full text

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
s13272-025-00870-x.pdf1.24 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons