Please use this identifier to cite or link to this item: https://doi.org/10.48441/4427.2797
DC FieldValueLanguage
dc.contributor.authorLilla, Helge-
dc.contributor.authorNiggemann, Oliver-
dc.contributor.authorNetzel, Thomas-
dc.date.accessioned2025-09-01T06:23:05Z-
dc.date.available2025-09-01T06:23:05Z-
dc.date.issued2025-08-29-
dc.identifier.issn1869-5590en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18106-
dc.description.abstractEvidence-based training as part of competency-based training and assessment confronts pilots with unexpected events in realistic scenarios in order to promote problem-solving and adaptability. Linking theory and practice is essential to promote these competencies. To achieve this, a cyber-physical system is presented that enables this through the innovative approach of “deep-linking keywords.” A heuristic scoring function determines a fulfillment score for each keyword. Based on the assessment, scenario-based training is adapted, enabling necessary individualization. Compared to existing systems, the prototype generates a coherent dataset that bridges knowledge work and scenario-based training, allowing for comprehensive scenario adaptation. The cyber-physical system consists of a computer-based training system built on the Django framework, a Basic Instrument Training Device, and flight simulator software, integrated via an application programming interface. After each evidence-based training session, performance data are processed through structured analysis pipelines to extract and evaluate scenario-linked feature vectors. This enables iterative parameter optimization for adaptive scenario control. Building on the prototype and the proven effectiveness of the heuristic scoring function, a large dataset will be compiled, and the rule-based method will be replaced by machine learning to enhance safety, effectiveness, and efficiency in aviation through highly individualized training enabled by an AI-based cyber-physical system.en
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.relation.ispartofCEAS aeronautical journal : an official journal of the Council of European Aerospace Societiesen_US
dc.subjectAI-based CPSen_US
dc.subjectFlight simulationen_US
dc.subjectMachine learningen_US
dc.subjectScenario-based trainingen_US
dc.subjectCBTAen_US
dc.subjectEBTen_US
dc.subject.ddc620: Ingenieurwissenschaftenen_US
dc.titleCPS prototype development for AI-based scenario adaptation in flight simulator trainingen
dc.typeArticleen_US
dc.identifier.doi10.48441/4427.2797-
dc.description.versionPeerRevieweden_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
tuhh.container.endpage:tbaen_US
tuhh.container.issue:tbaen_US
tuhh.container.startpage:tbaen_US
tuhh.container.volume:tbaen_US
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-218869-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Fahrzeugtechnik und Flugzeugbauen_US
tuhh.publication.instituteFakultät Technik und Informatiken_US
tuhh.publisher.doi10.1007/s13272-025-00870-x-
tuhh.type.opus(wissenschaftlicher) Artikel-
dc.rights.cchttps://creativecommons.org/licenses/by/4.0/en_US
dc.type.casraiJournal Article-
dc.type.diniarticle-
dc.type.driverarticle-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dcterms.DCMITypeText-
tuhh.container.articlenumber:tbaen_US
local.comment.externalLilla, H., Niggemann, O. & Netzel, T. CPS prototype development for AI-based scenario adaptation in flight simulator training. CEAS Aeronaut J (2025). https://doi.org/10.1007/s13272-025-00870-xen_US
tuhh.apc.statusfalseen_US
item.cerifentitytypePublications-
item.languageiso639-1en-
item.creatorOrcidLilla, Helge-
item.creatorOrcidNiggemann, Oliver-
item.creatorOrcidNetzel, Thomas-
item.openairetypeArticle-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_6501-
item.creatorGNDLilla, Helge-
item.creatorGNDNiggemann, Oliver-
item.creatorGNDNetzel, Thomas-
item.grantfulltextopen-
crisitem.author.deptDepartment Fahrzeugtechnik und Flugzeugbau (ehemalig, aufgelöst 10.2025)-
crisitem.author.parentorgFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)-
Appears in Collections:Publications with full text
Files in This Item:
File Description SizeFormat
s13272-025-00870-x.pdf1.24 MBAdobe PDFView/Open
Show simple item record

Page view(s)

141
checked on Dec 23, 2025

Download(s)

32
checked on Dec 23, 2025

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


This item is licensed under a Creative Commons License Creative Commons