Verlagslink DOI: 10.1145/3733155.3733201
Titel: Unlearning with partial label learning
Sprache: Englisch
Autorenschaft: Bach, Jörn 
Grohsjean, Alexander 
Schwanenberger, Christian 
Stelldinger, Peer  
Herausgeber: Association for Computing Machinery 
Schlagwörter: differential privacy; machine learning; negative quasiprobabilities; partial label learning; unlearning
Erscheinungsdatum: 17-Jul-2025
Verlag: Association for Computing Machinery
Teil der Schriftenreihe: Proceedings of The 18th ACM International Conference on PErvasive Technologies Related to Assistive Environments (PETRA 2025) : June 25– June 27, Corfu, Greece 
Anfangsseite: 175
Endseite: 181
Konferenz: ACM International Conference on PErvasive Technologies Related to Assistive Environments 2025 
Zusammenfassung: 
Machine Unlearning describes the challenge of forgetting data points that were used for an initial training of a machine learning model. Data privacy concerns as well as safety of sensitive learning data are the driving motivation for the emergence of this field. The special case of class unlearning is a challenge, as an entire class is to be unlearned without affecting the accuracy of potentially very similar other classes. We propose a novel method for class unlearning that is robust, efficient and can be applied without having access to the full initial training data. The approach is based on disambiguation-free partial label learning and can be understood as a stabilized version of gradient ascent. Furthermore, we show how this approach can be applied to training data with negative quasiprobabilities which is a problem encountered in high energy physics.
URI: https://hdl.handle.net/20.500.12738/18196
ISBN: 979-8-4007-1402-3
Begutachtungsstatus: Diese Version hat ein Peer-Review-Verfahren durchlaufen (Peer Review)
Einrichtung: Department Informatik 
Fakultät Technik und Informatik 
Dokumenttyp: Konferenzveröffentlichung
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Diese Ressource wurde unter folgender Copyright-Bestimmung veröffentlicht: Lizenz von Creative Commons Creative Commons