| Titel: | Indication of wet and dry periods in Germany using machine learning on meteorological and remote sensing data | Sprache: | Englisch | Autorenschaft: | Tran, Justin | Schlagwörter: | Machine Learning; Drought; Prediction; Forecast; Detection; Geoinformatics; Meteorology | Erscheinungsdatum: | 15-Dez-2025 | Zusammenfassung: | This thesis investigates the calculation, comparison, and forecasting of the Standardized Precipitation-Evapotranspiration Index (SPEI) using diverse data sources and methods. The study recalculates SPEI values for Germany employing various potential evapotranspiration (PET) equations—FAO-56 Penman-Monteith, Thornthwaite, Priestley-Taylor, and Hargreaves — using weather station data from the German Weather Service and remote sensing data from ERA5-Land Reanalysis. Significant variations were observed in SPEI values across different PET equations, with the Thornthwaite and Hargreaves equations showing the closest alignment with the SPEIbase - created by the SPEI inventors. The remote sensing approach with the FAO-56 Penman-Monteith PET equation yielded smooth and seasonally consistent SPEI values. |
URI: | https://hdl.handle.net/20.500.12738/18536 | Einrichtung: | Department Informatik (ehemalig, aufgelöst 10.2025) Fakultät Technik und Informatik (ehemalig, aufgelöst 10.2025) |
Dokumenttyp: | Abschlussarbeit | Abschlussarbeitentyp: | Masterarbeit | Betreuer*in: | Clemen, Thomas |
Gutachter*in: | Lins, Christian |
| Enthalten in den Sammlungen: | Theses |
Dateien zu dieser Ressource:
| Datei | Beschreibung | Größe | Format | |
|---|---|---|---|---|
| MA_Indication of wet and dry periods in Germany_geschwärzt.pdf | 5.83 MB | Adobe PDF | Öffnen/Anzeigen |
Feedback zu diesem Datensatz
Export
Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.