Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorSarstedt, Stefan-
dc.contributor.authorVarli, Timur-
dc.date.accessioned2025-12-17T10:48:16Z-
dc.date.available2025-12-17T10:48:16Z-
dc.date.created2025-06-03-
dc.date.issued2025-12-17-
dc.identifier.urihttps://hdl.handle.net/20.500.12738/18562-
dc.description.abstractAngesichts zunehmender Verfügbarkeit von Kriminalitätsdaten bieten maschinelle Lernverfahren neue Möglichkeiten zur Identifizierung von Kriminalitätsschwerpunkten und Planung präventiver Maßnahmen. Diese Bachelorarbeit beschäftigt sich mit der Anwendung und dem Vergleich verschiedener Machine-Learning-Algorithmen wie Decision Tree, Random Forest, XGBoost und K-Nearest Neighbors zur Vorhersage von Verbrechen auf Basis des öffentlich zugänglichen San Francisco Crime Datasets. Ziel der Arbeit ist es, die Leistungsfähigkeit unterschiedlicher Klassifikationsmodelle zu bewerten und deren Stärken und Schwächen bei der Klassifikation multiklassiger, unausgewogener Daten zu analysieren. Die besten Ergebnisse wurden mit XGBoost mit Beschränkung auf die zehn häufigsten Verbrechenskategorien erzielt (Accuracy: ~33 %). Dennoch zeigen die insgesamt niedrigen F1-Scores, dass seltene Klassen nur unzureichend vorhergesagt werden. Die Ergebnisse machen deutlich, dass herkömmliche Modelle bei unausgeglichenen Klassen-zuweisungen an ihre Grenzen stoßen. Zur Verbesserung der Modellleistung wurde Feature Engineering eingesetzt. Zusätzlich wird auf ethische Herausforderungen und datenschutzrechtliche Probleme eingegangen.de
dc.description.abstractIn view of the increasing availability of historical crime data, machine learning methods offer new possibilities for identifying crime hotspots and planning preventive measures. This bachelor thesis deals with the application and comparison of different machine learning algorithms for predicting crime based on the publicly available San Francisco Crime Dataset. The aim of the thesis is to evaluate the performance of different classification models and to analyse their strengths and weaknesses in the classification of multiclass, unbalanced data. The best results were achieved with XGBoost when restricted to the ten most frequent crime categories (Accuracy:~33 %). Nevertheless, the overall low F1 scores show that rare classes are insufficiently predicted. The results show that conventional models reach their limits with unbalanced class assignments. Feature engineering was used to improve model performance. In addition, ethical challenges and data protection issues are addressed.en
dc.language.isodeen_US
dc.subjectMachine Learningen_US
dc.subjectCrime Predictionen_US
dc.subjectPredictive Policingen_US
dc.subject.ddc004: Informatiken_US
dc.titleCrime Prediction mit Machine Learningde
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Informatik (ehemalig, aufgelöst 10.2025)en_US
thesis.grantor.universityOrInstitutionHochschule für Angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeTropmann-Frick, Marina-
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-225548-
tuhh.oai.showtrueen_US
tuhh.publication.instituteDepartment Informatik (ehemalig, aufgelöst 10.2025)en_US
tuhh.publication.instituteFakultät Technik und Informatik (ehemalig, aufgelöst 10.2025)en_US
tuhh.type.opusBachelor Thesis-
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesisbachelorThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomainen_US
item.cerifentitytypePublications-
item.languageiso639-1de-
item.creatorOrcidVarli, Timur-
item.advisorGNDSarstedt, Stefan-
item.openairetypeThesis-
item.fulltextWith Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.creatorGNDVarli, Timur-
item.grantfulltextopen-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
BA_Crime Prediction mit Machine Learning_geschwärzt.pdf1.6 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.