Verlagslink: http://PAHMIR.ProfScholz.de
https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2019-12-20.012
Verlagslink DOI: 10.15488/9213
Titel: Health Monitoring for Aircraft Systems using Decision Trees and Genetic Evolution
Sprache: 
Autorenschaft: Gerdes, Mike 
Erscheinungsdatum: 2019
Verlag: Luleå University of Technology
Zusammenfassung: 
Reducing unscheduled maintenance is important for aircraft operators. There are significant costs if flights must be delayed or cancelled, for example, if spares are not available and have to be shipped across the world. This thesis describes three methods of aircraft health condition monitoring and prediction; one for system monitoring, one for forecasting and one combining the two other methods for a complete monitoring and prediction process. Together, the three methods allow organizations to forecast possible failures. The first two use decision trees for decision-making and genetic optimization to improve the performance of the decision trees and to reduce the need for human interaction. Decision trees have several advantages: the generated code is quickly and easily processed, it can be altered by human experts without much work, it is readable by humans, and it requires few resources for learning and evaluation. The readability and the ability to modify the results are especially important; special knowledge can be gained and errors produced by the automated code generation can be removed. A large number of data sets is needed for meaningful predictions. This thesis uses two data sources: first, data from existing aircraft sensors, and second, sound and vibration data from additionally installed sensors. It draws on methods from the field of big data and machine learning to analyse and prepare the data sets for the prediction process.
URI: http://hdl.handle.net/20.500.12738/5028
Einrichtung: Department Fahrzeugtechnik und Flugzeugbau 
Fakultät Technik und Informatik 
Forschungsgruppe Flugzeugentwurf und -systeme (AERO) 
Dokumenttyp: Dissertation/Habilitation
Abschlussarbeitentyp: Dissertation
Hauptgutachter*in: Galar, Diego 
Gutachter*in der Arbeit: Kumar, Uday 
Scholz, Dieter  
Enthalten in den Sammlungen:Publications without full text

Zur Langanzeige

Seitenansichten

241
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Volltext ergänzen

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.