Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Maschinelles Lernen zur Optimierung einer autonomen Fahrspurführung
Sprache: Deutsch
Autorenschaft: Nikolov, Ivo 
Erscheinungsdatum: 4-Jan-2012
Zusammenfassung: 
In dieser Arbeit wurde ein modellfreies Spurführungsverfahren entwickelt. Dieses Verfahren berücksichtigt die Fahrzeugkinematik, den Verlauf der Fahrspurgeometrie und die Aktionen während der Lenkungstotzeit, um die optimale Lenkungsaktion für den aktuellen Fahrzeugzustand zu bestimmen. Das prädiktive NFQ-Spurführungsverfahren setzt den Neural Fitted Q Iteration Algorithmus zum Trainieren eines neuronalen Netzes ein. Zur Ermittlung von der besten Lenkungsaktion bezüglich des Fahrzeugzustandes, liefert das trainierte neuronale Netz eine Approximation der Q-Funktion.

In this work a model-free path tracking method was developed. The method considers the vehicle kinematics, the path geometry and the delayed control actions in order to determine the optimal control action. The predictive path tracking method applies the Neural Fitted Q Iteration algorithm for training a neural network. The trained neural network provides an approximation of the Q-function so that the best control action for the current vehicle state can be determined.
URI: http://hdl.handle.net/20.500.12738/5542
Einrichtung: Department Informatik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Masterarbeit
Hauptgutachter*in: Meisel, Andreas 
Gutachter*in der Arbeit: Pareigis, Stephan  
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Ivo_Nikolov_Masterarbeit.pdf2.23 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

279
checked on 13.01.2025

Download(s)

993
checked on 13.01.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.