Fulltext available Open Access
DC FieldValueLanguage
dc.contributor.advisorKossakowski, Klaus-Peter-
dc.contributor.authorBrülhart, Cornelia
dc.date.accessioned2020-09-29T14:00:05Z-
dc.date.available2020-09-29T14:00:05Z-
dc.date.created2016
dc.date.issued2017-01-17
dc.identifier.urihttp://hdl.handle.net/20.500.12738/7805-
dc.description.abstractZiel dieser Bachlorarbeit ist das Entwickeln einer Methodenkette, welche Funktionen aus dem Bereich des Data Mining beinhaltet, um fortgeschrittene, andauernde Bedrohungen aufzudecken. Sowohl PDNS als auch NetFlow Logdateien werden hierbei mit einer Reihe an Perl Skripten transformiert und vorverarbeitet, um anschließend in einem Data Mining Programm (Weka) mit einem Algorithmus ausgewertet zu werden. Die Angriffs Detektion wird mithilfe eines Ampel-Konzeptes realisiert, welches IP Adressen nach ihrem Grad des Angriffsverhalten klassiffziert und in Listen speichert.de
dc.description.abstractThe objective of this thesis is to determine a chain of different methods from the field of data mining, for the detection of advanced persistent threats. For this, both PDNS and NetFlow data log files are examined with multiple Perl scripts for preprocessing and data transformation purposes, as well as inserted into a data mining tool (Weka) to apply algorithms for knowledge discovery. To aid the detection of attacks, a traffc light concept for suspicious communication behaviour is being presented, which yields the automated developing of several lists containing IP addresses with varying levels of suspiciousness.en
dc.language.isodede
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc004 Informatik
dc.titleAnalysis of available Data Mining Algorithms to detect Advanced Persistent Threats (APT)de
dc.typeThesis
openaire.rightsinfo:eu-repo/semantics/openAccess
thesis.grantor.departmentDepartment Informatik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionHochschule für angewandte Wissenschaften Hamburg
tuhh.contributor.refereeZukunft, Olaf-
tuhh.gvk.ppn877014663
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-78072-
tuhh.note.externpubl-mit-pod
tuhh.note.intern1
tuhh.oai.showtrueen_US
tuhh.opus.id3774
tuhh.publication.instituteDepartment Informatik
tuhh.type.opusBachelor Thesis-
dc.subject.gndData Mining
dc.type.casraiSupervised Student Publication-
dc.type.dinibachelorThesis-
dc.type.driverbachelorThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesisbachelorThesis
dcterms.DCMITypeText-
tuhh.dnb.statusdomain-
item.creatorGNDBrülhart, Cornelia-
item.fulltextWith Fulltext-
item.creatorOrcidBrülhart, Cornelia-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.advisorGNDKossakowski, Klaus-Peter-
item.languageiso639-1de-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypeThesis-
Appears in Collections:Theses
Files in This Item:
File Description SizeFormat
Cornelia_Bruelhart_Thesis.pdf1.21 MBAdobe PDFView/Open
Show simple item record

Page view(s)

169
checked on Dec 27, 2024

Download(s)

216
checked on Dec 27, 2024

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.