Fulltext available Open Access
License: 
Title: Adaptiver Neuro-Fuzzy-Ansatz zur Diagnose
Language: German
Authors: Yildirim, Feridun 
Issue Date: 30-May-2017
Abstract: 
In der realen Computerumgebung ist es schwierig, eine Entscheidung zu treffen, die durch Unvollständigkeit und Ungenauigkeit charakterisiert ist. Mehrere Algorithmen und Technologien (Fuzzy-Logik, neuronale Netze, genetische Algorithmen etc.) wurden entwickelt, um eine akkurate Diagnose sicher zu stellen. In dieser Bachelor-arbeit wird ein adaptiver Neuro-Fuzzy-Ansatz als Klassifikator für eine Diagnose benutzt. Viele Aspekte des Adaptiven Neuro-Fuzzy-Inferenzsystems (ANFIS) wie Architektur, Variationen der Architektur, Lernalgorithmen, Implementationen und medizinische Anwendungen werden vorgestellt. Für eine Realisierung an einem Fall-beispiel wurden mehrere Modelle mit unterschiedlichen Konfigurationen entwickelt und evaluiert. Die Leistung der Modelle sind mit der Wurzel der mittleren quadrati-schen Fehler (RMSE) ermittelt, um das beste Modell zu erhalten. Die Analyse der Diagnoseresultate und die Vergleiche mit MLP/RBFN demonstrieren eine vielver-sprechende Leistung für eine Modellierung von Diagnosesystemen.

It is difficult to derive a decision in a real-world computing environment, which is characterized by incompleteness, inaccuracy and imprecision. Several algorithms and technologies (soft computing techniques - fuzzy logic, neural networks, genetic algo-rithm etc.) have been constructed to ensure accurate diagnosis. In this thesis, an adaptive neuro-fuzzy approach is used as a classifier for diagnosis. Many aspects of the proposed adaptive neuro-fuzzy inference system (ANFIS) are introduced such as architecture, variations, learning algorithms, implementations and medical diag-nostic applications. For case example, several models with different configurations are developed and evaluated. The performance of these models was measured by root-mean-square error (RMSE) to obtain the best fit model. Analysis of the diagnosis results and comparisons with MLP/RBFN demonstrates a promising performance for modeling of diagnostic systems.
URI: http://hdl.handle.net/20.500.12738/7980
Institute: Department Informatik 
Type: Thesis
Thesis type: Bachelor Thesis
Advisor: Meisel, Andreas 
Referee: Fohl, Wolfgang 
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat
BA_ANFIS_2017_Yildirim_Feridun.pdf2.82 MBAdobe PDFView/Open
Show full item record

Google ScholarTM

Check

HAW Katalog

Check

Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.